Relating the areas of regions determined by joining midpoints of two sides of a convex quadrilateral to...
up vote
0
down vote
favorite
I have tried solve the following problem, but I can not see how to approach it:
In the figure, $ABCD$ is an arbitrary convex quadrilateral, $M$ and $N$ are, respectively, the middle points of $overline{AB}$ and $overline{CD}$, and $S,S_1,S_2$ are the area of the shaded regions. Prove that $$S=S_1+S_2$$
Any hints are welcome!
euclidean-geometry problem-solving area
add a comment |
up vote
0
down vote
favorite
I have tried solve the following problem, but I can not see how to approach it:
In the figure, $ABCD$ is an arbitrary convex quadrilateral, $M$ and $N$ are, respectively, the middle points of $overline{AB}$ and $overline{CD}$, and $S,S_1,S_2$ are the area of the shaded regions. Prove that $$S=S_1+S_2$$
Any hints are welcome!
euclidean-geometry problem-solving area
Do you mean "an arbitrary convex quadrilateral"?
– ajotatxe
Jun 12 at 18:51
Yes, It should be a convex quadrilateral. I will change the statement.
– DiegoMath
Jun 12 at 18:57
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I have tried solve the following problem, but I can not see how to approach it:
In the figure, $ABCD$ is an arbitrary convex quadrilateral, $M$ and $N$ are, respectively, the middle points of $overline{AB}$ and $overline{CD}$, and $S,S_1,S_2$ are the area of the shaded regions. Prove that $$S=S_1+S_2$$
Any hints are welcome!
euclidean-geometry problem-solving area
I have tried solve the following problem, but I can not see how to approach it:
In the figure, $ABCD$ is an arbitrary convex quadrilateral, $M$ and $N$ are, respectively, the middle points of $overline{AB}$ and $overline{CD}$, and $S,S_1,S_2$ are the area of the shaded regions. Prove that $$S=S_1+S_2$$
Any hints are welcome!
euclidean-geometry problem-solving area
euclidean-geometry problem-solving area
edited Jun 12 at 18:58
asked Jun 12 at 18:33
DiegoMath
2,0491021
2,0491021
Do you mean "an arbitrary convex quadrilateral"?
– ajotatxe
Jun 12 at 18:51
Yes, It should be a convex quadrilateral. I will change the statement.
– DiegoMath
Jun 12 at 18:57
add a comment |
Do you mean "an arbitrary convex quadrilateral"?
– ajotatxe
Jun 12 at 18:51
Yes, It should be a convex quadrilateral. I will change the statement.
– DiegoMath
Jun 12 at 18:57
Do you mean "an arbitrary convex quadrilateral"?
– ajotatxe
Jun 12 at 18:51
Do you mean "an arbitrary convex quadrilateral"?
– ajotatxe
Jun 12 at 18:51
Yes, It should be a convex quadrilateral. I will change the statement.
– DiegoMath
Jun 12 at 18:57
Yes, It should be a convex quadrilateral. I will change the statement.
– DiegoMath
Jun 12 at 18:57
add a comment |
2 Answers
2
active
oldest
votes
up vote
1
down vote
I could not draw the diagram but here is the solution. Draw a dotted line from A parallel to DC. Draw dotted perpendiculars from A to DC, M to DC and also from B to DC, they intersect DC at K, G and H respectively (say). Now MG and BH also intersect the line drawn from A parallel to DC say at point E and F respectively. Now as AM = MB so AE = EF and ME = (1/2) BF, let ME = x, BF = 2x. Now say AN and MD intersect at S1 and MC and BN intersect at S2. Now
$Delta ADN = (1/2){overline{DN}}.{overline{AK}}$,
$Delta MDN = (1/2){overline{DN}}.{overline{MG}} = (1/2){overline{DN}}.({overline{AK}} + x) $,
$Delta MNC = (1/2){overline{NC}}.({overline{AK}} + x) = (1/2){overline{DN}}.({overline{AK}} + x)$,
$Delta BNC = (1/2){overline{DN}}.({overline{AK}} + 2x)$,
Now $Delta ADN = Delta ADS_1+ Delta S_1DN$,
$Delta MDN = Delta S_1DN + Delta MS_1N$,
$Delta MNC = Delta MS_2N + Delta S_2NC$,
$Delta BNC = Delta S_2NC + Delta BS_2C$
So, $Delta MDN - Delta ADN = Delta MS_1N - Delta ADS_1 = (1/2){overline{DN}}x$
$Delta BNC - Delta MNC = Delta BS_2C - Delta MS_2N = (1/2){overline{DN}}x$
So $Delta MS_1N + Delta MS_2N = Delta BS_2C + Delta ADS_1$
Note: I assumed BH > AK , but anyway it does not matter.
add a comment |
up vote
0
down vote
Using Shoe Lace formulas for quadrilateral and triangle, you can verify algebrically the sum of areas of triangle is area of the quadrilateral.
A = [x1,y1]; B = [x2,y2]; C = [x3,y3]; D = [x4,y4]
M = (1/2*x1 + 1/2*x2, 1/2*y1 + 1/2*y2)
N = (1/2*x3 + 1/2*x4, 1/2*y3 + 1/2*y4)
Q = [(x1*x3*y1 + x2*x3*y1 - x1*x4*y1 + x2*x4*y1 - x3*x4*y1 - x4^2*y1 - 2*x1*x4*y2 + x3*x4*y2 + x4^2*y2 - x1^2*y3 - x1*x2*y3 + 2*x1*x4*y3 + x1^2*y4 + x1*x2*y4 - x1*x3*y4 - x2*x3*y4 + x1*x4*y4 - x2*x4*y4)/(2*x2*y1 + x3*y1 - 3*x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + 3*x1*y4 - x2*y4 - 2*x3*y4), (x3*y1^2 - x4*y1^2 + x3*y1*y2 - x4*y1*y2 - x1*y1*y3 + x4*y1*y3 - x1*y2*y3 + x4*y2*y3 + x1*y1*y4 + 2*x2*y1*y4 - 2*x3*y1*y4 - x4*y1*y4 - x1*y2*y4 + x4*y2*y4 + x1*y3*y4 - x2*y3*y4 + x1*y4^2 - x2*y4^2)/(2*x2*y1 + x3*y1 - 3*x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + 3*x1*y4 - x2*y4 - 2*x3*y4)]
R = [(2*x2*x3*y1 - x3^2*y1 - x3*x4*y1 - x1*x3*y2 + x2*x3*y2 + x3^2*y2 - x1*x4*y2 - x2*x4*y2 + x3*x4*y2 - x1*x2*y3 - x2^2*y3 + x1*x3*y3 - x2*x3*y3 + x1*x4*y3 + x2*x4*y3 + x1*x2*y4 + x2^2*y4 - 2*x2*x3*y4)/(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + 3*x3*y2 - x4*y2 + x1*y3 - 3*x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4), (x3*y1*y2 - x4*y1*y2 + x3*y2^2 - x4*y2^2 + x2*y1*y3 - x3*y1*y3 - 2*x1*y2*y3 - x2*y2*y3 + x3*y2*y3 + 2*x4*y2*y3 + x1*y3^2 - x2*y3^2 + x2*y1*y4 - x3*y1*y4 + x2*y2*y4 - x3*y2*y4 + x1*y3*y4 - x2*y3*y4)/(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + 3*x3*y2 - x4*y2 + x1*y3 - 3*x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4)]
Area_MRNQ = QuadrilateralShoeLaceArea(M,R,N,Q)
Area_MRNQ = -1/2*(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 + x1*y3 - x2*y3 + x1*y4 - x2*y4)*(x2*y1 - x4*y1 - x1*y2 + x3*y2 - x2*y3 + x4*y3 + x1*y4 - x3*y4)*(x3*y1 - x4*y1 + x3*y2 - x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4)/((2*x2*y1 + x3*y1 - 3*x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + 3*x1*y4 - x2*y4 - 2*x3*y4)*(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + 3*x3*y2 - x4*y2 + x1*y3 - 3*x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4))
Area_AQD = TriangleShoeLaceArea(A,Q,D)
Area_AQD = -1/2*(x2*y1 - x4*y1 - x1*y2 + x4*y2 + x1*y4 - x2*y4)*(x3*y1 - x4*y1 - x1*y3 + x4*y3 + x1*y4 - x3*y4)/(2*x2*y1 + x3*y1 - 3*x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + 3*x1*y4 - x2*y4 - 2*x3*y4)
Area_BCR = TriangleShoeLaceArea(B,C,R)
Area_BCR = -1/2*(x2*y1 - x3*y1 - x1*y2 + x3*y2 + x1*y3 - x2*y3)*(x3*y2 - x4*y2 - x2*y3 + x4*y3 + x2*y4 - x3*y4)/(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + 3*x3*y2 - x4*y2 + x1*y3 - 3*x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4)
It works for any signed quadrilateral (a signed quadrilateral is a quadrilateral where you take care of clockwise orientation for computing area with the shoe lace method) ... convex or not, self intersecting or not.
– Dominique Laurain
Nov 17 at 18:19
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
I could not draw the diagram but here is the solution. Draw a dotted line from A parallel to DC. Draw dotted perpendiculars from A to DC, M to DC and also from B to DC, they intersect DC at K, G and H respectively (say). Now MG and BH also intersect the line drawn from A parallel to DC say at point E and F respectively. Now as AM = MB so AE = EF and ME = (1/2) BF, let ME = x, BF = 2x. Now say AN and MD intersect at S1 and MC and BN intersect at S2. Now
$Delta ADN = (1/2){overline{DN}}.{overline{AK}}$,
$Delta MDN = (1/2){overline{DN}}.{overline{MG}} = (1/2){overline{DN}}.({overline{AK}} + x) $,
$Delta MNC = (1/2){overline{NC}}.({overline{AK}} + x) = (1/2){overline{DN}}.({overline{AK}} + x)$,
$Delta BNC = (1/2){overline{DN}}.({overline{AK}} + 2x)$,
Now $Delta ADN = Delta ADS_1+ Delta S_1DN$,
$Delta MDN = Delta S_1DN + Delta MS_1N$,
$Delta MNC = Delta MS_2N + Delta S_2NC$,
$Delta BNC = Delta S_2NC + Delta BS_2C$
So, $Delta MDN - Delta ADN = Delta MS_1N - Delta ADS_1 = (1/2){overline{DN}}x$
$Delta BNC - Delta MNC = Delta BS_2C - Delta MS_2N = (1/2){overline{DN}}x$
So $Delta MS_1N + Delta MS_2N = Delta BS_2C + Delta ADS_1$
Note: I assumed BH > AK , but anyway it does not matter.
add a comment |
up vote
1
down vote
I could not draw the diagram but here is the solution. Draw a dotted line from A parallel to DC. Draw dotted perpendiculars from A to DC, M to DC and also from B to DC, they intersect DC at K, G and H respectively (say). Now MG and BH also intersect the line drawn from A parallel to DC say at point E and F respectively. Now as AM = MB so AE = EF and ME = (1/2) BF, let ME = x, BF = 2x. Now say AN and MD intersect at S1 and MC and BN intersect at S2. Now
$Delta ADN = (1/2){overline{DN}}.{overline{AK}}$,
$Delta MDN = (1/2){overline{DN}}.{overline{MG}} = (1/2){overline{DN}}.({overline{AK}} + x) $,
$Delta MNC = (1/2){overline{NC}}.({overline{AK}} + x) = (1/2){overline{DN}}.({overline{AK}} + x)$,
$Delta BNC = (1/2){overline{DN}}.({overline{AK}} + 2x)$,
Now $Delta ADN = Delta ADS_1+ Delta S_1DN$,
$Delta MDN = Delta S_1DN + Delta MS_1N$,
$Delta MNC = Delta MS_2N + Delta S_2NC$,
$Delta BNC = Delta S_2NC + Delta BS_2C$
So, $Delta MDN - Delta ADN = Delta MS_1N - Delta ADS_1 = (1/2){overline{DN}}x$
$Delta BNC - Delta MNC = Delta BS_2C - Delta MS_2N = (1/2){overline{DN}}x$
So $Delta MS_1N + Delta MS_2N = Delta BS_2C + Delta ADS_1$
Note: I assumed BH > AK , but anyway it does not matter.
add a comment |
up vote
1
down vote
up vote
1
down vote
I could not draw the diagram but here is the solution. Draw a dotted line from A parallel to DC. Draw dotted perpendiculars from A to DC, M to DC and also from B to DC, they intersect DC at K, G and H respectively (say). Now MG and BH also intersect the line drawn from A parallel to DC say at point E and F respectively. Now as AM = MB so AE = EF and ME = (1/2) BF, let ME = x, BF = 2x. Now say AN and MD intersect at S1 and MC and BN intersect at S2. Now
$Delta ADN = (1/2){overline{DN}}.{overline{AK}}$,
$Delta MDN = (1/2){overline{DN}}.{overline{MG}} = (1/2){overline{DN}}.({overline{AK}} + x) $,
$Delta MNC = (1/2){overline{NC}}.({overline{AK}} + x) = (1/2){overline{DN}}.({overline{AK}} + x)$,
$Delta BNC = (1/2){overline{DN}}.({overline{AK}} + 2x)$,
Now $Delta ADN = Delta ADS_1+ Delta S_1DN$,
$Delta MDN = Delta S_1DN + Delta MS_1N$,
$Delta MNC = Delta MS_2N + Delta S_2NC$,
$Delta BNC = Delta S_2NC + Delta BS_2C$
So, $Delta MDN - Delta ADN = Delta MS_1N - Delta ADS_1 = (1/2){overline{DN}}x$
$Delta BNC - Delta MNC = Delta BS_2C - Delta MS_2N = (1/2){overline{DN}}x$
So $Delta MS_1N + Delta MS_2N = Delta BS_2C + Delta ADS_1$
Note: I assumed BH > AK , but anyway it does not matter.
I could not draw the diagram but here is the solution. Draw a dotted line from A parallel to DC. Draw dotted perpendiculars from A to DC, M to DC and also from B to DC, they intersect DC at K, G and H respectively (say). Now MG and BH also intersect the line drawn from A parallel to DC say at point E and F respectively. Now as AM = MB so AE = EF and ME = (1/2) BF, let ME = x, BF = 2x. Now say AN and MD intersect at S1 and MC and BN intersect at S2. Now
$Delta ADN = (1/2){overline{DN}}.{overline{AK}}$,
$Delta MDN = (1/2){overline{DN}}.{overline{MG}} = (1/2){overline{DN}}.({overline{AK}} + x) $,
$Delta MNC = (1/2){overline{NC}}.({overline{AK}} + x) = (1/2){overline{DN}}.({overline{AK}} + x)$,
$Delta BNC = (1/2){overline{DN}}.({overline{AK}} + 2x)$,
Now $Delta ADN = Delta ADS_1+ Delta S_1DN$,
$Delta MDN = Delta S_1DN + Delta MS_1N$,
$Delta MNC = Delta MS_2N + Delta S_2NC$,
$Delta BNC = Delta S_2NC + Delta BS_2C$
So, $Delta MDN - Delta ADN = Delta MS_1N - Delta ADS_1 = (1/2){overline{DN}}x$
$Delta BNC - Delta MNC = Delta BS_2C - Delta MS_2N = (1/2){overline{DN}}x$
So $Delta MS_1N + Delta MS_2N = Delta BS_2C + Delta ADS_1$
Note: I assumed BH > AK , but anyway it does not matter.
edited Jun 13 at 6:54
answered Jun 12 at 20:19
AMITAVA
713
713
add a comment |
add a comment |
up vote
0
down vote
Using Shoe Lace formulas for quadrilateral and triangle, you can verify algebrically the sum of areas of triangle is area of the quadrilateral.
A = [x1,y1]; B = [x2,y2]; C = [x3,y3]; D = [x4,y4]
M = (1/2*x1 + 1/2*x2, 1/2*y1 + 1/2*y2)
N = (1/2*x3 + 1/2*x4, 1/2*y3 + 1/2*y4)
Q = [(x1*x3*y1 + x2*x3*y1 - x1*x4*y1 + x2*x4*y1 - x3*x4*y1 - x4^2*y1 - 2*x1*x4*y2 + x3*x4*y2 + x4^2*y2 - x1^2*y3 - x1*x2*y3 + 2*x1*x4*y3 + x1^2*y4 + x1*x2*y4 - x1*x3*y4 - x2*x3*y4 + x1*x4*y4 - x2*x4*y4)/(2*x2*y1 + x3*y1 - 3*x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + 3*x1*y4 - x2*y4 - 2*x3*y4), (x3*y1^2 - x4*y1^2 + x3*y1*y2 - x4*y1*y2 - x1*y1*y3 + x4*y1*y3 - x1*y2*y3 + x4*y2*y3 + x1*y1*y4 + 2*x2*y1*y4 - 2*x3*y1*y4 - x4*y1*y4 - x1*y2*y4 + x4*y2*y4 + x1*y3*y4 - x2*y3*y4 + x1*y4^2 - x2*y4^2)/(2*x2*y1 + x3*y1 - 3*x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + 3*x1*y4 - x2*y4 - 2*x3*y4)]
R = [(2*x2*x3*y1 - x3^2*y1 - x3*x4*y1 - x1*x3*y2 + x2*x3*y2 + x3^2*y2 - x1*x4*y2 - x2*x4*y2 + x3*x4*y2 - x1*x2*y3 - x2^2*y3 + x1*x3*y3 - x2*x3*y3 + x1*x4*y3 + x2*x4*y3 + x1*x2*y4 + x2^2*y4 - 2*x2*x3*y4)/(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + 3*x3*y2 - x4*y2 + x1*y3 - 3*x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4), (x3*y1*y2 - x4*y1*y2 + x3*y2^2 - x4*y2^2 + x2*y1*y3 - x3*y1*y3 - 2*x1*y2*y3 - x2*y2*y3 + x3*y2*y3 + 2*x4*y2*y3 + x1*y3^2 - x2*y3^2 + x2*y1*y4 - x3*y1*y4 + x2*y2*y4 - x3*y2*y4 + x1*y3*y4 - x2*y3*y4)/(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + 3*x3*y2 - x4*y2 + x1*y3 - 3*x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4)]
Area_MRNQ = QuadrilateralShoeLaceArea(M,R,N,Q)
Area_MRNQ = -1/2*(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 + x1*y3 - x2*y3 + x1*y4 - x2*y4)*(x2*y1 - x4*y1 - x1*y2 + x3*y2 - x2*y3 + x4*y3 + x1*y4 - x3*y4)*(x3*y1 - x4*y1 + x3*y2 - x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4)/((2*x2*y1 + x3*y1 - 3*x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + 3*x1*y4 - x2*y4 - 2*x3*y4)*(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + 3*x3*y2 - x4*y2 + x1*y3 - 3*x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4))
Area_AQD = TriangleShoeLaceArea(A,Q,D)
Area_AQD = -1/2*(x2*y1 - x4*y1 - x1*y2 + x4*y2 + x1*y4 - x2*y4)*(x3*y1 - x4*y1 - x1*y3 + x4*y3 + x1*y4 - x3*y4)/(2*x2*y1 + x3*y1 - 3*x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + 3*x1*y4 - x2*y4 - 2*x3*y4)
Area_BCR = TriangleShoeLaceArea(B,C,R)
Area_BCR = -1/2*(x2*y1 - x3*y1 - x1*y2 + x3*y2 + x1*y3 - x2*y3)*(x3*y2 - x4*y2 - x2*y3 + x4*y3 + x2*y4 - x3*y4)/(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + 3*x3*y2 - x4*y2 + x1*y3 - 3*x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4)
It works for any signed quadrilateral (a signed quadrilateral is a quadrilateral where you take care of clockwise orientation for computing area with the shoe lace method) ... convex or not, self intersecting or not.
– Dominique Laurain
Nov 17 at 18:19
add a comment |
up vote
0
down vote
Using Shoe Lace formulas for quadrilateral and triangle, you can verify algebrically the sum of areas of triangle is area of the quadrilateral.
A = [x1,y1]; B = [x2,y2]; C = [x3,y3]; D = [x4,y4]
M = (1/2*x1 + 1/2*x2, 1/2*y1 + 1/2*y2)
N = (1/2*x3 + 1/2*x4, 1/2*y3 + 1/2*y4)
Q = [(x1*x3*y1 + x2*x3*y1 - x1*x4*y1 + x2*x4*y1 - x3*x4*y1 - x4^2*y1 - 2*x1*x4*y2 + x3*x4*y2 + x4^2*y2 - x1^2*y3 - x1*x2*y3 + 2*x1*x4*y3 + x1^2*y4 + x1*x2*y4 - x1*x3*y4 - x2*x3*y4 + x1*x4*y4 - x2*x4*y4)/(2*x2*y1 + x3*y1 - 3*x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + 3*x1*y4 - x2*y4 - 2*x3*y4), (x3*y1^2 - x4*y1^2 + x3*y1*y2 - x4*y1*y2 - x1*y1*y3 + x4*y1*y3 - x1*y2*y3 + x4*y2*y3 + x1*y1*y4 + 2*x2*y1*y4 - 2*x3*y1*y4 - x4*y1*y4 - x1*y2*y4 + x4*y2*y4 + x1*y3*y4 - x2*y3*y4 + x1*y4^2 - x2*y4^2)/(2*x2*y1 + x3*y1 - 3*x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + 3*x1*y4 - x2*y4 - 2*x3*y4)]
R = [(2*x2*x3*y1 - x3^2*y1 - x3*x4*y1 - x1*x3*y2 + x2*x3*y2 + x3^2*y2 - x1*x4*y2 - x2*x4*y2 + x3*x4*y2 - x1*x2*y3 - x2^2*y3 + x1*x3*y3 - x2*x3*y3 + x1*x4*y3 + x2*x4*y3 + x1*x2*y4 + x2^2*y4 - 2*x2*x3*y4)/(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + 3*x3*y2 - x4*y2 + x1*y3 - 3*x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4), (x3*y1*y2 - x4*y1*y2 + x3*y2^2 - x4*y2^2 + x2*y1*y3 - x3*y1*y3 - 2*x1*y2*y3 - x2*y2*y3 + x3*y2*y3 + 2*x4*y2*y3 + x1*y3^2 - x2*y3^2 + x2*y1*y4 - x3*y1*y4 + x2*y2*y4 - x3*y2*y4 + x1*y3*y4 - x2*y3*y4)/(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + 3*x3*y2 - x4*y2 + x1*y3 - 3*x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4)]
Area_MRNQ = QuadrilateralShoeLaceArea(M,R,N,Q)
Area_MRNQ = -1/2*(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 + x1*y3 - x2*y3 + x1*y4 - x2*y4)*(x2*y1 - x4*y1 - x1*y2 + x3*y2 - x2*y3 + x4*y3 + x1*y4 - x3*y4)*(x3*y1 - x4*y1 + x3*y2 - x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4)/((2*x2*y1 + x3*y1 - 3*x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + 3*x1*y4 - x2*y4 - 2*x3*y4)*(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + 3*x3*y2 - x4*y2 + x1*y3 - 3*x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4))
Area_AQD = TriangleShoeLaceArea(A,Q,D)
Area_AQD = -1/2*(x2*y1 - x4*y1 - x1*y2 + x4*y2 + x1*y4 - x2*y4)*(x3*y1 - x4*y1 - x1*y3 + x4*y3 + x1*y4 - x3*y4)/(2*x2*y1 + x3*y1 - 3*x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + 3*x1*y4 - x2*y4 - 2*x3*y4)
Area_BCR = TriangleShoeLaceArea(B,C,R)
Area_BCR = -1/2*(x2*y1 - x3*y1 - x1*y2 + x3*y2 + x1*y3 - x2*y3)*(x3*y2 - x4*y2 - x2*y3 + x4*y3 + x2*y4 - x3*y4)/(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + 3*x3*y2 - x4*y2 + x1*y3 - 3*x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4)
It works for any signed quadrilateral (a signed quadrilateral is a quadrilateral where you take care of clockwise orientation for computing area with the shoe lace method) ... convex or not, self intersecting or not.
– Dominique Laurain
Nov 17 at 18:19
add a comment |
up vote
0
down vote
up vote
0
down vote
Using Shoe Lace formulas for quadrilateral and triangle, you can verify algebrically the sum of areas of triangle is area of the quadrilateral.
A = [x1,y1]; B = [x2,y2]; C = [x3,y3]; D = [x4,y4]
M = (1/2*x1 + 1/2*x2, 1/2*y1 + 1/2*y2)
N = (1/2*x3 + 1/2*x4, 1/2*y3 + 1/2*y4)
Q = [(x1*x3*y1 + x2*x3*y1 - x1*x4*y1 + x2*x4*y1 - x3*x4*y1 - x4^2*y1 - 2*x1*x4*y2 + x3*x4*y2 + x4^2*y2 - x1^2*y3 - x1*x2*y3 + 2*x1*x4*y3 + x1^2*y4 + x1*x2*y4 - x1*x3*y4 - x2*x3*y4 + x1*x4*y4 - x2*x4*y4)/(2*x2*y1 + x3*y1 - 3*x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + 3*x1*y4 - x2*y4 - 2*x3*y4), (x3*y1^2 - x4*y1^2 + x3*y1*y2 - x4*y1*y2 - x1*y1*y3 + x4*y1*y3 - x1*y2*y3 + x4*y2*y3 + x1*y1*y4 + 2*x2*y1*y4 - 2*x3*y1*y4 - x4*y1*y4 - x1*y2*y4 + x4*y2*y4 + x1*y3*y4 - x2*y3*y4 + x1*y4^2 - x2*y4^2)/(2*x2*y1 + x3*y1 - 3*x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + 3*x1*y4 - x2*y4 - 2*x3*y4)]
R = [(2*x2*x3*y1 - x3^2*y1 - x3*x4*y1 - x1*x3*y2 + x2*x3*y2 + x3^2*y2 - x1*x4*y2 - x2*x4*y2 + x3*x4*y2 - x1*x2*y3 - x2^2*y3 + x1*x3*y3 - x2*x3*y3 + x1*x4*y3 + x2*x4*y3 + x1*x2*y4 + x2^2*y4 - 2*x2*x3*y4)/(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + 3*x3*y2 - x4*y2 + x1*y3 - 3*x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4), (x3*y1*y2 - x4*y1*y2 + x3*y2^2 - x4*y2^2 + x2*y1*y3 - x3*y1*y3 - 2*x1*y2*y3 - x2*y2*y3 + x3*y2*y3 + 2*x4*y2*y3 + x1*y3^2 - x2*y3^2 + x2*y1*y4 - x3*y1*y4 + x2*y2*y4 - x3*y2*y4 + x1*y3*y4 - x2*y3*y4)/(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + 3*x3*y2 - x4*y2 + x1*y3 - 3*x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4)]
Area_MRNQ = QuadrilateralShoeLaceArea(M,R,N,Q)
Area_MRNQ = -1/2*(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 + x1*y3 - x2*y3 + x1*y4 - x2*y4)*(x2*y1 - x4*y1 - x1*y2 + x3*y2 - x2*y3 + x4*y3 + x1*y4 - x3*y4)*(x3*y1 - x4*y1 + x3*y2 - x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4)/((2*x2*y1 + x3*y1 - 3*x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + 3*x1*y4 - x2*y4 - 2*x3*y4)*(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + 3*x3*y2 - x4*y2 + x1*y3 - 3*x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4))
Area_AQD = TriangleShoeLaceArea(A,Q,D)
Area_AQD = -1/2*(x2*y1 - x4*y1 - x1*y2 + x4*y2 + x1*y4 - x2*y4)*(x3*y1 - x4*y1 - x1*y3 + x4*y3 + x1*y4 - x3*y4)/(2*x2*y1 + x3*y1 - 3*x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + 3*x1*y4 - x2*y4 - 2*x3*y4)
Area_BCR = TriangleShoeLaceArea(B,C,R)
Area_BCR = -1/2*(x2*y1 - x3*y1 - x1*y2 + x3*y2 + x1*y3 - x2*y3)*(x3*y2 - x4*y2 - x2*y3 + x4*y3 + x2*y4 - x3*y4)/(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + 3*x3*y2 - x4*y2 + x1*y3 - 3*x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4)
Using Shoe Lace formulas for quadrilateral and triangle, you can verify algebrically the sum of areas of triangle is area of the quadrilateral.
A = [x1,y1]; B = [x2,y2]; C = [x3,y3]; D = [x4,y4]
M = (1/2*x1 + 1/2*x2, 1/2*y1 + 1/2*y2)
N = (1/2*x3 + 1/2*x4, 1/2*y3 + 1/2*y4)
Q = [(x1*x3*y1 + x2*x3*y1 - x1*x4*y1 + x2*x4*y1 - x3*x4*y1 - x4^2*y1 - 2*x1*x4*y2 + x3*x4*y2 + x4^2*y2 - x1^2*y3 - x1*x2*y3 + 2*x1*x4*y3 + x1^2*y4 + x1*x2*y4 - x1*x3*y4 - x2*x3*y4 + x1*x4*y4 - x2*x4*y4)/(2*x2*y1 + x3*y1 - 3*x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + 3*x1*y4 - x2*y4 - 2*x3*y4), (x3*y1^2 - x4*y1^2 + x3*y1*y2 - x4*y1*y2 - x1*y1*y3 + x4*y1*y3 - x1*y2*y3 + x4*y2*y3 + x1*y1*y4 + 2*x2*y1*y4 - 2*x3*y1*y4 - x4*y1*y4 - x1*y2*y4 + x4*y2*y4 + x1*y3*y4 - x2*y3*y4 + x1*y4^2 - x2*y4^2)/(2*x2*y1 + x3*y1 - 3*x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + 3*x1*y4 - x2*y4 - 2*x3*y4)]
R = [(2*x2*x3*y1 - x3^2*y1 - x3*x4*y1 - x1*x3*y2 + x2*x3*y2 + x3^2*y2 - x1*x4*y2 - x2*x4*y2 + x3*x4*y2 - x1*x2*y3 - x2^2*y3 + x1*x3*y3 - x2*x3*y3 + x1*x4*y3 + x2*x4*y3 + x1*x2*y4 + x2^2*y4 - 2*x2*x3*y4)/(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + 3*x3*y2 - x4*y2 + x1*y3 - 3*x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4), (x3*y1*y2 - x4*y1*y2 + x3*y2^2 - x4*y2^2 + x2*y1*y3 - x3*y1*y3 - 2*x1*y2*y3 - x2*y2*y3 + x3*y2*y3 + 2*x4*y2*y3 + x1*y3^2 - x2*y3^2 + x2*y1*y4 - x3*y1*y4 + x2*y2*y4 - x3*y2*y4 + x1*y3*y4 - x2*y3*y4)/(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + 3*x3*y2 - x4*y2 + x1*y3 - 3*x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4)]
Area_MRNQ = QuadrilateralShoeLaceArea(M,R,N,Q)
Area_MRNQ = -1/2*(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 + x1*y3 - x2*y3 + x1*y4 - x2*y4)*(x2*y1 - x4*y1 - x1*y2 + x3*y2 - x2*y3 + x4*y3 + x1*y4 - x3*y4)*(x3*y1 - x4*y1 + x3*y2 - x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4)/((2*x2*y1 + x3*y1 - 3*x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + 3*x1*y4 - x2*y4 - 2*x3*y4)*(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + 3*x3*y2 - x4*y2 + x1*y3 - 3*x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4))
Area_AQD = TriangleShoeLaceArea(A,Q,D)
Area_AQD = -1/2*(x2*y1 - x4*y1 - x1*y2 + x4*y2 + x1*y4 - x2*y4)*(x3*y1 - x4*y1 - x1*y3 + x4*y3 + x1*y4 - x3*y4)/(2*x2*y1 + x3*y1 - 3*x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + 3*x1*y4 - x2*y4 - 2*x3*y4)
Area_BCR = TriangleShoeLaceArea(B,C,R)
Area_BCR = -1/2*(x2*y1 - x3*y1 - x1*y2 + x3*y2 + x1*y3 - x2*y3)*(x3*y2 - x4*y2 - x2*y3 + x4*y3 + x2*y4 - x3*y4)/(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + 3*x3*y2 - x4*y2 + x1*y3 - 3*x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4)
answered Nov 17 at 18:16
Dominique Laurain
472
472
It works for any signed quadrilateral (a signed quadrilateral is a quadrilateral where you take care of clockwise orientation for computing area with the shoe lace method) ... convex or not, self intersecting or not.
– Dominique Laurain
Nov 17 at 18:19
add a comment |
It works for any signed quadrilateral (a signed quadrilateral is a quadrilateral where you take care of clockwise orientation for computing area with the shoe lace method) ... convex or not, self intersecting or not.
– Dominique Laurain
Nov 17 at 18:19
It works for any signed quadrilateral (a signed quadrilateral is a quadrilateral where you take care of clockwise orientation for computing area with the shoe lace method) ... convex or not, self intersecting or not.
– Dominique Laurain
Nov 17 at 18:19
It works for any signed quadrilateral (a signed quadrilateral is a quadrilateral where you take care of clockwise orientation for computing area with the shoe lace method) ... convex or not, self intersecting or not.
– Dominique Laurain
Nov 17 at 18:19
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2817307%2frelating-the-areas-of-regions-determined-by-joining-midpoints-of-two-sides-of-a%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Do you mean "an arbitrary convex quadrilateral"?
– ajotatxe
Jun 12 at 18:51
Yes, It should be a convex quadrilateral. I will change the statement.
– DiegoMath
Jun 12 at 18:57