Tricky real integral: $int_0^{2 pi} e^{cos(2 t)} cos(sin(2 t)) =2pi$
I'm trying to prove the following:
$$ int_0^{2 pi} e^{cos(2 t)} cos(sin(2 t)) =2pi $$
Numerical analysis agrees with this to very high accuracy, so I'm almost sure it's true. Mathematica gives this answer after thinking for a long, but gives an insane antiderivative in terms of exponential integrals. I'd like to evaluate the integral with purely real methods (I've never done complex analysis), as elegantly as possible.
How can I tackle this integral?
calculus integration definite-integrals
add a comment |
I'm trying to prove the following:
$$ int_0^{2 pi} e^{cos(2 t)} cos(sin(2 t)) =2pi $$
Numerical analysis agrees with this to very high accuracy, so I'm almost sure it's true. Mathematica gives this answer after thinking for a long, but gives an insane antiderivative in terms of exponential integrals. I'd like to evaluate the integral with purely real methods (I've never done complex analysis), as elegantly as possible.
How can I tackle this integral?
calculus integration definite-integrals
2
Have you heard of Cauchy integral theorem?
– Frank W.
Dec 1 at 2:35
It would appear that$$int_0^{2pi}e^{cos at}cos(sin at),mathrm dt=2pi$$at least for all non-zero integer values of $a$.
– user170231
Dec 1 at 2:41
$x=cos(2t)$ then $dx=-2sin(2t)dt$ and the integral has to be broken up into four parts at intervals with $t=frac{pi}{2}$, each with integrand $frac{1}{2}e^xcos(x)$. Each piece should integrate to $frac{pi}{2}$.
– herb steinberg
Dec 1 at 2:48
1
You may not have done "complex analysis", in the sense of things like the residue theorem, but I can offer you a one-line proof that in terms of complex numbers only uses $exp ix=cos x+isin x$, viz. $$Reint_0^{2pi}exp(exp i2t)dt=Resum_{nge 0}frac{1}{n!}int_0^{2pi}exp i2nt dt=Resum_{nge 0}frac{2pidelta_{2n,,0}}{n!}=2pi.$$With a bit of care, you can use Taylor series to rewrite that as a real-only proof.
– J.G.
Dec 1 at 9:20
add a comment |
I'm trying to prove the following:
$$ int_0^{2 pi} e^{cos(2 t)} cos(sin(2 t)) =2pi $$
Numerical analysis agrees with this to very high accuracy, so I'm almost sure it's true. Mathematica gives this answer after thinking for a long, but gives an insane antiderivative in terms of exponential integrals. I'd like to evaluate the integral with purely real methods (I've never done complex analysis), as elegantly as possible.
How can I tackle this integral?
calculus integration definite-integrals
I'm trying to prove the following:
$$ int_0^{2 pi} e^{cos(2 t)} cos(sin(2 t)) =2pi $$
Numerical analysis agrees with this to very high accuracy, so I'm almost sure it's true. Mathematica gives this answer after thinking for a long, but gives an insane antiderivative in terms of exponential integrals. I'd like to evaluate the integral with purely real methods (I've never done complex analysis), as elegantly as possible.
How can I tackle this integral?
calculus integration definite-integrals
calculus integration definite-integrals
edited Dec 1 at 9:34
Martin Sleziak
44.7k7115270
44.7k7115270
asked Dec 1 at 2:15
NMister
376110
376110
2
Have you heard of Cauchy integral theorem?
– Frank W.
Dec 1 at 2:35
It would appear that$$int_0^{2pi}e^{cos at}cos(sin at),mathrm dt=2pi$$at least for all non-zero integer values of $a$.
– user170231
Dec 1 at 2:41
$x=cos(2t)$ then $dx=-2sin(2t)dt$ and the integral has to be broken up into four parts at intervals with $t=frac{pi}{2}$, each with integrand $frac{1}{2}e^xcos(x)$. Each piece should integrate to $frac{pi}{2}$.
– herb steinberg
Dec 1 at 2:48
1
You may not have done "complex analysis", in the sense of things like the residue theorem, but I can offer you a one-line proof that in terms of complex numbers only uses $exp ix=cos x+isin x$, viz. $$Reint_0^{2pi}exp(exp i2t)dt=Resum_{nge 0}frac{1}{n!}int_0^{2pi}exp i2nt dt=Resum_{nge 0}frac{2pidelta_{2n,,0}}{n!}=2pi.$$With a bit of care, you can use Taylor series to rewrite that as a real-only proof.
– J.G.
Dec 1 at 9:20
add a comment |
2
Have you heard of Cauchy integral theorem?
– Frank W.
Dec 1 at 2:35
It would appear that$$int_0^{2pi}e^{cos at}cos(sin at),mathrm dt=2pi$$at least for all non-zero integer values of $a$.
– user170231
Dec 1 at 2:41
$x=cos(2t)$ then $dx=-2sin(2t)dt$ and the integral has to be broken up into four parts at intervals with $t=frac{pi}{2}$, each with integrand $frac{1}{2}e^xcos(x)$. Each piece should integrate to $frac{pi}{2}$.
– herb steinberg
Dec 1 at 2:48
1
You may not have done "complex analysis", in the sense of things like the residue theorem, but I can offer you a one-line proof that in terms of complex numbers only uses $exp ix=cos x+isin x$, viz. $$Reint_0^{2pi}exp(exp i2t)dt=Resum_{nge 0}frac{1}{n!}int_0^{2pi}exp i2nt dt=Resum_{nge 0}frac{2pidelta_{2n,,0}}{n!}=2pi.$$With a bit of care, you can use Taylor series to rewrite that as a real-only proof.
– J.G.
Dec 1 at 9:20
2
2
Have you heard of Cauchy integral theorem?
– Frank W.
Dec 1 at 2:35
Have you heard of Cauchy integral theorem?
– Frank W.
Dec 1 at 2:35
It would appear that$$int_0^{2pi}e^{cos at}cos(sin at),mathrm dt=2pi$$at least for all non-zero integer values of $a$.
– user170231
Dec 1 at 2:41
It would appear that$$int_0^{2pi}e^{cos at}cos(sin at),mathrm dt=2pi$$at least for all non-zero integer values of $a$.
– user170231
Dec 1 at 2:41
$x=cos(2t)$ then $dx=-2sin(2t)dt$ and the integral has to be broken up into four parts at intervals with $t=frac{pi}{2}$, each with integrand $frac{1}{2}e^xcos(x)$. Each piece should integrate to $frac{pi}{2}$.
– herb steinberg
Dec 1 at 2:48
$x=cos(2t)$ then $dx=-2sin(2t)dt$ and the integral has to be broken up into four parts at intervals with $t=frac{pi}{2}$, each with integrand $frac{1}{2}e^xcos(x)$. Each piece should integrate to $frac{pi}{2}$.
– herb steinberg
Dec 1 at 2:48
1
1
You may not have done "complex analysis", in the sense of things like the residue theorem, but I can offer you a one-line proof that in terms of complex numbers only uses $exp ix=cos x+isin x$, viz. $$Reint_0^{2pi}exp(exp i2t)dt=Resum_{nge 0}frac{1}{n!}int_0^{2pi}exp i2nt dt=Resum_{nge 0}frac{2pidelta_{2n,,0}}{n!}=2pi.$$With a bit of care, you can use Taylor series to rewrite that as a real-only proof.
– J.G.
Dec 1 at 9:20
You may not have done "complex analysis", in the sense of things like the residue theorem, but I can offer you a one-line proof that in terms of complex numbers only uses $exp ix=cos x+isin x$, viz. $$Reint_0^{2pi}exp(exp i2t)dt=Resum_{nge 0}frac{1}{n!}int_0^{2pi}exp i2nt dt=Resum_{nge 0}frac{2pidelta_{2n,,0}}{n!}=2pi.$$With a bit of care, you can use Taylor series to rewrite that as a real-only proof.
– J.G.
Dec 1 at 9:20
add a comment |
3 Answers
3
active
oldest
votes
Write
$$ I(alpha) = int_{0}^{2pi} e^{alpha cos(2t)}cos(alpha sin(2t)) , dt. $$
Then $I(0) = 2pi$, and for $alpha > 0$,
begin{align*}
I'(alpha)
&= int_{0}^{2pi} left[ e^{alpha cos(2t)}cos(alpha sin(2t))cos(2t) - e^{alpha cos(2t)}sin(alpha sin(2t))sin(2t) right] , dt \
&= left[ frac{1}{2alpha} e^{alphacos(2t)}sin(alphasin(2t)) right]_{0}^{2pi} \
&= 0.
end{align*}
So $I(alpha) = 2pi$ for all $alpha in mathbb{R}$.
A general computation. Let $f$ be analytic on $B(0,R)$. Define $I : [0, R) to mathbb{C}$ by
$$ I(r) = int_{0}^{2pi} fleft(re^{itheta}right) , dtheta. $$
Then
$$ I'(r)
= int_{0}^{2pi} f'left(re^{itheta}right)e^{itheta} , dtheta
= left[ frac{1}{ir} fleft(re^{itheta}right) right]_{0}^{2pi}
= 0 $$
and thus $I$ is constant with the value $I(0) = 2pi f(0)$. The above answer corresponds to the real part of this computation with $f(z) = e^z$.
add a comment |
Assuming that you could enjoy special functions.
Consider
$$I=int e^{cos(a t)} cos(sin(a t)),dtqquad text{and}qquad J=int e^{cos(a t)} sin(sin(a t)),dt$$
$$I+iJ=int e^{e^{ i at}},dt=-frac{i}{a}, text{Ei}left(e^{i a t}right)$$
$$I-iJ=int e^{e^{- ia t}},dt=frac{i}{a} , text{Ei}left(e^{- i a t}right)$$ (where appear the exponential integral function) since, using $e^{kt}=u$,
$$int e^{e^{kt}},dt=frac{1}{k }intfrac{e^u}{u},du=frac{1}{k },text{Ei}(u)$$ This makes
$$I=frac{i }{2 a},left(text{Ei}left(e^{-i a t}right)-text{Ei}left(e^{i a
t}right)right)$$
$$J=-frac{1}{2 a},left(text{Ei}left(e^{-i a t}right)+text{Ei}left(e^{i a t}right)right)$$ For integer values of $a$, the definite integration from $0$ to $2pi$ requires breaking it in $2a$ intervals and, as @user170231 commented, the result is $2pi$ for any $a$.
add a comment |
Put $z=e^{it}$ and using the formulas:
$$cos{2t}=frac{z^2+frac{1}{z^2}}{2}$$
$$sin{2t}=frac{z^2-frac{1}{z^2}}{2i}$$
apply the $text{Residue theorem}$ integrating along the circle $C(0,1)={z:|z|=1}$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020916%2ftricky-real-integral-int-02-pi-e-cos2-t-cos-sin2-t-2-pi%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
Write
$$ I(alpha) = int_{0}^{2pi} e^{alpha cos(2t)}cos(alpha sin(2t)) , dt. $$
Then $I(0) = 2pi$, and for $alpha > 0$,
begin{align*}
I'(alpha)
&= int_{0}^{2pi} left[ e^{alpha cos(2t)}cos(alpha sin(2t))cos(2t) - e^{alpha cos(2t)}sin(alpha sin(2t))sin(2t) right] , dt \
&= left[ frac{1}{2alpha} e^{alphacos(2t)}sin(alphasin(2t)) right]_{0}^{2pi} \
&= 0.
end{align*}
So $I(alpha) = 2pi$ for all $alpha in mathbb{R}$.
A general computation. Let $f$ be analytic on $B(0,R)$. Define $I : [0, R) to mathbb{C}$ by
$$ I(r) = int_{0}^{2pi} fleft(re^{itheta}right) , dtheta. $$
Then
$$ I'(r)
= int_{0}^{2pi} f'left(re^{itheta}right)e^{itheta} , dtheta
= left[ frac{1}{ir} fleft(re^{itheta}right) right]_{0}^{2pi}
= 0 $$
and thus $I$ is constant with the value $I(0) = 2pi f(0)$. The above answer corresponds to the real part of this computation with $f(z) = e^z$.
add a comment |
Write
$$ I(alpha) = int_{0}^{2pi} e^{alpha cos(2t)}cos(alpha sin(2t)) , dt. $$
Then $I(0) = 2pi$, and for $alpha > 0$,
begin{align*}
I'(alpha)
&= int_{0}^{2pi} left[ e^{alpha cos(2t)}cos(alpha sin(2t))cos(2t) - e^{alpha cos(2t)}sin(alpha sin(2t))sin(2t) right] , dt \
&= left[ frac{1}{2alpha} e^{alphacos(2t)}sin(alphasin(2t)) right]_{0}^{2pi} \
&= 0.
end{align*}
So $I(alpha) = 2pi$ for all $alpha in mathbb{R}$.
A general computation. Let $f$ be analytic on $B(0,R)$. Define $I : [0, R) to mathbb{C}$ by
$$ I(r) = int_{0}^{2pi} fleft(re^{itheta}right) , dtheta. $$
Then
$$ I'(r)
= int_{0}^{2pi} f'left(re^{itheta}right)e^{itheta} , dtheta
= left[ frac{1}{ir} fleft(re^{itheta}right) right]_{0}^{2pi}
= 0 $$
and thus $I$ is constant with the value $I(0) = 2pi f(0)$. The above answer corresponds to the real part of this computation with $f(z) = e^z$.
add a comment |
Write
$$ I(alpha) = int_{0}^{2pi} e^{alpha cos(2t)}cos(alpha sin(2t)) , dt. $$
Then $I(0) = 2pi$, and for $alpha > 0$,
begin{align*}
I'(alpha)
&= int_{0}^{2pi} left[ e^{alpha cos(2t)}cos(alpha sin(2t))cos(2t) - e^{alpha cos(2t)}sin(alpha sin(2t))sin(2t) right] , dt \
&= left[ frac{1}{2alpha} e^{alphacos(2t)}sin(alphasin(2t)) right]_{0}^{2pi} \
&= 0.
end{align*}
So $I(alpha) = 2pi$ for all $alpha in mathbb{R}$.
A general computation. Let $f$ be analytic on $B(0,R)$. Define $I : [0, R) to mathbb{C}$ by
$$ I(r) = int_{0}^{2pi} fleft(re^{itheta}right) , dtheta. $$
Then
$$ I'(r)
= int_{0}^{2pi} f'left(re^{itheta}right)e^{itheta} , dtheta
= left[ frac{1}{ir} fleft(re^{itheta}right) right]_{0}^{2pi}
= 0 $$
and thus $I$ is constant with the value $I(0) = 2pi f(0)$. The above answer corresponds to the real part of this computation with $f(z) = e^z$.
Write
$$ I(alpha) = int_{0}^{2pi} e^{alpha cos(2t)}cos(alpha sin(2t)) , dt. $$
Then $I(0) = 2pi$, and for $alpha > 0$,
begin{align*}
I'(alpha)
&= int_{0}^{2pi} left[ e^{alpha cos(2t)}cos(alpha sin(2t))cos(2t) - e^{alpha cos(2t)}sin(alpha sin(2t))sin(2t) right] , dt \
&= left[ frac{1}{2alpha} e^{alphacos(2t)}sin(alphasin(2t)) right]_{0}^{2pi} \
&= 0.
end{align*}
So $I(alpha) = 2pi$ for all $alpha in mathbb{R}$.
A general computation. Let $f$ be analytic on $B(0,R)$. Define $I : [0, R) to mathbb{C}$ by
$$ I(r) = int_{0}^{2pi} fleft(re^{itheta}right) , dtheta. $$
Then
$$ I'(r)
= int_{0}^{2pi} f'left(re^{itheta}right)e^{itheta} , dtheta
= left[ frac{1}{ir} fleft(re^{itheta}right) right]_{0}^{2pi}
= 0 $$
and thus $I$ is constant with the value $I(0) = 2pi f(0)$. The above answer corresponds to the real part of this computation with $f(z) = e^z$.
edited Dec 1 at 9:13
Mutantoe
564411
564411
answered Dec 1 at 2:42
Sangchul Lee
91.2k12163264
91.2k12163264
add a comment |
add a comment |
Assuming that you could enjoy special functions.
Consider
$$I=int e^{cos(a t)} cos(sin(a t)),dtqquad text{and}qquad J=int e^{cos(a t)} sin(sin(a t)),dt$$
$$I+iJ=int e^{e^{ i at}},dt=-frac{i}{a}, text{Ei}left(e^{i a t}right)$$
$$I-iJ=int e^{e^{- ia t}},dt=frac{i}{a} , text{Ei}left(e^{- i a t}right)$$ (where appear the exponential integral function) since, using $e^{kt}=u$,
$$int e^{e^{kt}},dt=frac{1}{k }intfrac{e^u}{u},du=frac{1}{k },text{Ei}(u)$$ This makes
$$I=frac{i }{2 a},left(text{Ei}left(e^{-i a t}right)-text{Ei}left(e^{i a
t}right)right)$$
$$J=-frac{1}{2 a},left(text{Ei}left(e^{-i a t}right)+text{Ei}left(e^{i a t}right)right)$$ For integer values of $a$, the definite integration from $0$ to $2pi$ requires breaking it in $2a$ intervals and, as @user170231 commented, the result is $2pi$ for any $a$.
add a comment |
Assuming that you could enjoy special functions.
Consider
$$I=int e^{cos(a t)} cos(sin(a t)),dtqquad text{and}qquad J=int e^{cos(a t)} sin(sin(a t)),dt$$
$$I+iJ=int e^{e^{ i at}},dt=-frac{i}{a}, text{Ei}left(e^{i a t}right)$$
$$I-iJ=int e^{e^{- ia t}},dt=frac{i}{a} , text{Ei}left(e^{- i a t}right)$$ (where appear the exponential integral function) since, using $e^{kt}=u$,
$$int e^{e^{kt}},dt=frac{1}{k }intfrac{e^u}{u},du=frac{1}{k },text{Ei}(u)$$ This makes
$$I=frac{i }{2 a},left(text{Ei}left(e^{-i a t}right)-text{Ei}left(e^{i a
t}right)right)$$
$$J=-frac{1}{2 a},left(text{Ei}left(e^{-i a t}right)+text{Ei}left(e^{i a t}right)right)$$ For integer values of $a$, the definite integration from $0$ to $2pi$ requires breaking it in $2a$ intervals and, as @user170231 commented, the result is $2pi$ for any $a$.
add a comment |
Assuming that you could enjoy special functions.
Consider
$$I=int e^{cos(a t)} cos(sin(a t)),dtqquad text{and}qquad J=int e^{cos(a t)} sin(sin(a t)),dt$$
$$I+iJ=int e^{e^{ i at}},dt=-frac{i}{a}, text{Ei}left(e^{i a t}right)$$
$$I-iJ=int e^{e^{- ia t}},dt=frac{i}{a} , text{Ei}left(e^{- i a t}right)$$ (where appear the exponential integral function) since, using $e^{kt}=u$,
$$int e^{e^{kt}},dt=frac{1}{k }intfrac{e^u}{u},du=frac{1}{k },text{Ei}(u)$$ This makes
$$I=frac{i }{2 a},left(text{Ei}left(e^{-i a t}right)-text{Ei}left(e^{i a
t}right)right)$$
$$J=-frac{1}{2 a},left(text{Ei}left(e^{-i a t}right)+text{Ei}left(e^{i a t}right)right)$$ For integer values of $a$, the definite integration from $0$ to $2pi$ requires breaking it in $2a$ intervals and, as @user170231 commented, the result is $2pi$ for any $a$.
Assuming that you could enjoy special functions.
Consider
$$I=int e^{cos(a t)} cos(sin(a t)),dtqquad text{and}qquad J=int e^{cos(a t)} sin(sin(a t)),dt$$
$$I+iJ=int e^{e^{ i at}},dt=-frac{i}{a}, text{Ei}left(e^{i a t}right)$$
$$I-iJ=int e^{e^{- ia t}},dt=frac{i}{a} , text{Ei}left(e^{- i a t}right)$$ (where appear the exponential integral function) since, using $e^{kt}=u$,
$$int e^{e^{kt}},dt=frac{1}{k }intfrac{e^u}{u},du=frac{1}{k },text{Ei}(u)$$ This makes
$$I=frac{i }{2 a},left(text{Ei}left(e^{-i a t}right)-text{Ei}left(e^{i a
t}right)right)$$
$$J=-frac{1}{2 a},left(text{Ei}left(e^{-i a t}right)+text{Ei}left(e^{i a t}right)right)$$ For integer values of $a$, the definite integration from $0$ to $2pi$ requires breaking it in $2a$ intervals and, as @user170231 commented, the result is $2pi$ for any $a$.
edited Dec 1 at 15:21
answered Dec 1 at 5:35
Claude Leibovici
119k1157132
119k1157132
add a comment |
add a comment |
Put $z=e^{it}$ and using the formulas:
$$cos{2t}=frac{z^2+frac{1}{z^2}}{2}$$
$$sin{2t}=frac{z^2-frac{1}{z^2}}{2i}$$
apply the $text{Residue theorem}$ integrating along the circle $C(0,1)={z:|z|=1}$
add a comment |
Put $z=e^{it}$ and using the formulas:
$$cos{2t}=frac{z^2+frac{1}{z^2}}{2}$$
$$sin{2t}=frac{z^2-frac{1}{z^2}}{2i}$$
apply the $text{Residue theorem}$ integrating along the circle $C(0,1)={z:|z|=1}$
add a comment |
Put $z=e^{it}$ and using the formulas:
$$cos{2t}=frac{z^2+frac{1}{z^2}}{2}$$
$$sin{2t}=frac{z^2-frac{1}{z^2}}{2i}$$
apply the $text{Residue theorem}$ integrating along the circle $C(0,1)={z:|z|=1}$
Put $z=e^{it}$ and using the formulas:
$$cos{2t}=frac{z^2+frac{1}{z^2}}{2}$$
$$sin{2t}=frac{z^2-frac{1}{z^2}}{2i}$$
apply the $text{Residue theorem}$ integrating along the circle $C(0,1)={z:|z|=1}$
answered Dec 1 at 15:38
Marios Gretsas
8,44711437
8,44711437
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020916%2ftricky-real-integral-int-02-pi-e-cos2-t-cos-sin2-t-2-pi%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
Have you heard of Cauchy integral theorem?
– Frank W.
Dec 1 at 2:35
It would appear that$$int_0^{2pi}e^{cos at}cos(sin at),mathrm dt=2pi$$at least for all non-zero integer values of $a$.
– user170231
Dec 1 at 2:41
$x=cos(2t)$ then $dx=-2sin(2t)dt$ and the integral has to be broken up into four parts at intervals with $t=frac{pi}{2}$, each with integrand $frac{1}{2}e^xcos(x)$. Each piece should integrate to $frac{pi}{2}$.
– herb steinberg
Dec 1 at 2:48
1
You may not have done "complex analysis", in the sense of things like the residue theorem, but I can offer you a one-line proof that in terms of complex numbers only uses $exp ix=cos x+isin x$, viz. $$Reint_0^{2pi}exp(exp i2t)dt=Resum_{nge 0}frac{1}{n!}int_0^{2pi}exp i2nt dt=Resum_{nge 0}frac{2pidelta_{2n,,0}}{n!}=2pi.$$With a bit of care, you can use Taylor series to rewrite that as a real-only proof.
– J.G.
Dec 1 at 9:20