a question about Differential quotient operator in sobolev spaces
Define $nabla_h u=frac{tau_h u-u}{h}$, where $tau_h u=u(x_1+h,x_2,...,x_n)$.
We use $|cdot|$ to denote the norm in $L^2(R^n)$.
We have the following lemma:
Lemma 1. If $u$ belongs to $H^1(R_+^n)$, then $|nabla_hu|leq|frac{partial u}{partial x_1}|$.
Then we will have the following two statements:
- From $|nabla_h u|leq|frac{partial u}{partial x_1}|$, we can deduce that $tau_hu$ is a continuous linear operator from $H^1(R_+^n)$ to $L_2(R_+^n)$.
My question is:
Why is $tau_hu$ a continuous linear operator from $H^1(R_+^n)$ to $L_2(R_+^n)$? I know that continuity of the operator can be deduced from the boundedness of the operator, but I don't know why the operator $tau_h u$ is bounded.
I think that boundedness of $tau_hu$ means that there exists a constant $C$ such that
$$supfrac{|tau_hu|_{H^1(R_+^n)}}{|u|_{L_2(R_+^n)}}leq C$$
But I can't figure out how to prove this.
functional-analysis pde sobolev-spaces
add a comment |
Define $nabla_h u=frac{tau_h u-u}{h}$, where $tau_h u=u(x_1+h,x_2,...,x_n)$.
We use $|cdot|$ to denote the norm in $L^2(R^n)$.
We have the following lemma:
Lemma 1. If $u$ belongs to $H^1(R_+^n)$, then $|nabla_hu|leq|frac{partial u}{partial x_1}|$.
Then we will have the following two statements:
- From $|nabla_h u|leq|frac{partial u}{partial x_1}|$, we can deduce that $tau_hu$ is a continuous linear operator from $H^1(R_+^n)$ to $L_2(R_+^n)$.
My question is:
Why is $tau_hu$ a continuous linear operator from $H^1(R_+^n)$ to $L_2(R_+^n)$? I know that continuity of the operator can be deduced from the boundedness of the operator, but I don't know why the operator $tau_h u$ is bounded.
I think that boundedness of $tau_hu$ means that there exists a constant $C$ such that
$$supfrac{|tau_hu|_{H^1(R_+^n)}}{|u|_{L_2(R_+^n)}}leq C$$
But I can't figure out how to prove this.
functional-analysis pde sobolev-spaces
add a comment |
Define $nabla_h u=frac{tau_h u-u}{h}$, where $tau_h u=u(x_1+h,x_2,...,x_n)$.
We use $|cdot|$ to denote the norm in $L^2(R^n)$.
We have the following lemma:
Lemma 1. If $u$ belongs to $H^1(R_+^n)$, then $|nabla_hu|leq|frac{partial u}{partial x_1}|$.
Then we will have the following two statements:
- From $|nabla_h u|leq|frac{partial u}{partial x_1}|$, we can deduce that $tau_hu$ is a continuous linear operator from $H^1(R_+^n)$ to $L_2(R_+^n)$.
My question is:
Why is $tau_hu$ a continuous linear operator from $H^1(R_+^n)$ to $L_2(R_+^n)$? I know that continuity of the operator can be deduced from the boundedness of the operator, but I don't know why the operator $tau_h u$ is bounded.
I think that boundedness of $tau_hu$ means that there exists a constant $C$ such that
$$supfrac{|tau_hu|_{H^1(R_+^n)}}{|u|_{L_2(R_+^n)}}leq C$$
But I can't figure out how to prove this.
functional-analysis pde sobolev-spaces
Define $nabla_h u=frac{tau_h u-u}{h}$, where $tau_h u=u(x_1+h,x_2,...,x_n)$.
We use $|cdot|$ to denote the norm in $L^2(R^n)$.
We have the following lemma:
Lemma 1. If $u$ belongs to $H^1(R_+^n)$, then $|nabla_hu|leq|frac{partial u}{partial x_1}|$.
Then we will have the following two statements:
- From $|nabla_h u|leq|frac{partial u}{partial x_1}|$, we can deduce that $tau_hu$ is a continuous linear operator from $H^1(R_+^n)$ to $L_2(R_+^n)$.
My question is:
Why is $tau_hu$ a continuous linear operator from $H^1(R_+^n)$ to $L_2(R_+^n)$? I know that continuity of the operator can be deduced from the boundedness of the operator, but I don't know why the operator $tau_h u$ is bounded.
I think that boundedness of $tau_hu$ means that there exists a constant $C$ such that
$$supfrac{|tau_hu|_{H^1(R_+^n)}}{|u|_{L_2(R_+^n)}}leq C$$
But I can't figure out how to prove this.
functional-analysis pde sobolev-spaces
functional-analysis pde sobolev-spaces
edited Nov 19 '18 at 7:41
asked Nov 19 '18 at 6:33
chloe hj
626
626
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
Regarding the first question:
$$sup_{uin H^1} frac{|tau_h u|_{L_2}}{|u|_{H^1}}=sup_{uin H^1} frac{|tau_h u-u+u|_{L_2}}{|u|_{H^1}}leqsup_{uin H^1} frac{|tau_h u-u|_{L_2}+|u|_{L_2}}{|u|_{H^1}}leqsup_{uin H^1} frac{hcdot|tfrac{partial u}{partial x_1}|_{L_2}+|u|_{L_2}}{|u|_{H^1}}leqmax(1,h)sup_{uin H^1} frac{|tfrac{partial u}{partial x_1}|_{L_2}+|u|_{L_2}}{|u|_{H^1}}leq\max(1,h)sup_{uin H^1} frac{|u|_{H^1}}{|u|_{H^1}}=max(1,h)$$
Here I have used the triangle inequality and Lemma 1. Note that in your definition of the boundedness the norms are swapped.
Regarding your second question, it seems to be the limit for $hto0$.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004593%2fa-question-about-differential-quotient-operator-in-sobolev-spaces%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Regarding the first question:
$$sup_{uin H^1} frac{|tau_h u|_{L_2}}{|u|_{H^1}}=sup_{uin H^1} frac{|tau_h u-u+u|_{L_2}}{|u|_{H^1}}leqsup_{uin H^1} frac{|tau_h u-u|_{L_2}+|u|_{L_2}}{|u|_{H^1}}leqsup_{uin H^1} frac{hcdot|tfrac{partial u}{partial x_1}|_{L_2}+|u|_{L_2}}{|u|_{H^1}}leqmax(1,h)sup_{uin H^1} frac{|tfrac{partial u}{partial x_1}|_{L_2}+|u|_{L_2}}{|u|_{H^1}}leq\max(1,h)sup_{uin H^1} frac{|u|_{H^1}}{|u|_{H^1}}=max(1,h)$$
Here I have used the triangle inequality and Lemma 1. Note that in your definition of the boundedness the norms are swapped.
Regarding your second question, it seems to be the limit for $hto0$.
add a comment |
Regarding the first question:
$$sup_{uin H^1} frac{|tau_h u|_{L_2}}{|u|_{H^1}}=sup_{uin H^1} frac{|tau_h u-u+u|_{L_2}}{|u|_{H^1}}leqsup_{uin H^1} frac{|tau_h u-u|_{L_2}+|u|_{L_2}}{|u|_{H^1}}leqsup_{uin H^1} frac{hcdot|tfrac{partial u}{partial x_1}|_{L_2}+|u|_{L_2}}{|u|_{H^1}}leqmax(1,h)sup_{uin H^1} frac{|tfrac{partial u}{partial x_1}|_{L_2}+|u|_{L_2}}{|u|_{H^1}}leq\max(1,h)sup_{uin H^1} frac{|u|_{H^1}}{|u|_{H^1}}=max(1,h)$$
Here I have used the triangle inequality and Lemma 1. Note that in your definition of the boundedness the norms are swapped.
Regarding your second question, it seems to be the limit for $hto0$.
add a comment |
Regarding the first question:
$$sup_{uin H^1} frac{|tau_h u|_{L_2}}{|u|_{H^1}}=sup_{uin H^1} frac{|tau_h u-u+u|_{L_2}}{|u|_{H^1}}leqsup_{uin H^1} frac{|tau_h u-u|_{L_2}+|u|_{L_2}}{|u|_{H^1}}leqsup_{uin H^1} frac{hcdot|tfrac{partial u}{partial x_1}|_{L_2}+|u|_{L_2}}{|u|_{H^1}}leqmax(1,h)sup_{uin H^1} frac{|tfrac{partial u}{partial x_1}|_{L_2}+|u|_{L_2}}{|u|_{H^1}}leq\max(1,h)sup_{uin H^1} frac{|u|_{H^1}}{|u|_{H^1}}=max(1,h)$$
Here I have used the triangle inequality and Lemma 1. Note that in your definition of the boundedness the norms are swapped.
Regarding your second question, it seems to be the limit for $hto0$.
Regarding the first question:
$$sup_{uin H^1} frac{|tau_h u|_{L_2}}{|u|_{H^1}}=sup_{uin H^1} frac{|tau_h u-u+u|_{L_2}}{|u|_{H^1}}leqsup_{uin H^1} frac{|tau_h u-u|_{L_2}+|u|_{L_2}}{|u|_{H^1}}leqsup_{uin H^1} frac{hcdot|tfrac{partial u}{partial x_1}|_{L_2}+|u|_{L_2}}{|u|_{H^1}}leqmax(1,h)sup_{uin H^1} frac{|tfrac{partial u}{partial x_1}|_{L_2}+|u|_{L_2}}{|u|_{H^1}}leq\max(1,h)sup_{uin H^1} frac{|u|_{H^1}}{|u|_{H^1}}=max(1,h)$$
Here I have used the triangle inequality and Lemma 1. Note that in your definition of the boundedness the norms are swapped.
Regarding your second question, it seems to be the limit for $hto0$.
answered Nov 19 '18 at 7:46
maxmilgram
4327
4327
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004593%2fa-question-about-differential-quotient-operator-in-sobolev-spaces%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown