measure preserving transformation inequality
Let $(lambda,Lambda)$ denote the Lebesgue measure space on $(0,infty)$. Suppose $E$ and $F$ are Lebesgue-measurable subsets of $(0,infty)$. A map $m:Fto E$ is called measure-presering whenever $lambda(m^{-1}(A))=lambda(A)$ for each measurable subset $A$ of $E$. It is called order-preserving if $aleq b$ in $F$ implies $m(a)leq m(b)$ in $E$. Denote by $mathbb{MO}(F,E)$ the set of all bijective maps $m:Fto E$ such that $m$ and $m^{-1}$ are both order-preserving and measure-preserving.
Fix $rin(0,infty)$. Let $W:(0,infty)to(0,infty)$ be a positive decreasing function and $f:(0,infty)to[0,infty)$ be a nonnegative function increasing on $(0,r]$ and zero on $(r,infty)$.
Conjecture. Suppose $Esubset(0,r]$ with $b=lambda(E)=lambda(F)leq r$, and $minmathbb{MO}(F,E)$. Then
$$int_0^inftylambda{xin(0,b]:f(t+r-b)W(t)>x};dtgeqint_0^inftylambda{xin F:(fcirc m)(t)W(t)>x};dt.$$
Or, equivalently,
$$int_0^bf(t+r-b)W(t);dtgeqint_F(fcirc m)(t)W(t);dt.$$
This seems intuitively obvious, and would be easy to prove if we were working in $mathbb{N}$ endowed with the counting measure instead of $(0,infty)$ endowed with the Lebesgue measure. Unfortunately, Lebesgue-measurable sets can be very ugly indeed, and so that makes working with them difficult sometimes.
The following may help.
Fact. There exists a surjection $tau:Eto[0,b]$ which is both measure-preserving and order-preserving. (However, it is not necessarily injective, and hence need not be invertible.) A similar map exists for $F$.
real-analysis measure-theory
add a comment |
Let $(lambda,Lambda)$ denote the Lebesgue measure space on $(0,infty)$. Suppose $E$ and $F$ are Lebesgue-measurable subsets of $(0,infty)$. A map $m:Fto E$ is called measure-presering whenever $lambda(m^{-1}(A))=lambda(A)$ for each measurable subset $A$ of $E$. It is called order-preserving if $aleq b$ in $F$ implies $m(a)leq m(b)$ in $E$. Denote by $mathbb{MO}(F,E)$ the set of all bijective maps $m:Fto E$ such that $m$ and $m^{-1}$ are both order-preserving and measure-preserving.
Fix $rin(0,infty)$. Let $W:(0,infty)to(0,infty)$ be a positive decreasing function and $f:(0,infty)to[0,infty)$ be a nonnegative function increasing on $(0,r]$ and zero on $(r,infty)$.
Conjecture. Suppose $Esubset(0,r]$ with $b=lambda(E)=lambda(F)leq r$, and $minmathbb{MO}(F,E)$. Then
$$int_0^inftylambda{xin(0,b]:f(t+r-b)W(t)>x};dtgeqint_0^inftylambda{xin F:(fcirc m)(t)W(t)>x};dt.$$
Or, equivalently,
$$int_0^bf(t+r-b)W(t);dtgeqint_F(fcirc m)(t)W(t);dt.$$
This seems intuitively obvious, and would be easy to prove if we were working in $mathbb{N}$ endowed with the counting measure instead of $(0,infty)$ endowed with the Lebesgue measure. Unfortunately, Lebesgue-measurable sets can be very ugly indeed, and so that makes working with them difficult sometimes.
The following may help.
Fact. There exists a surjection $tau:Eto[0,b]$ which is both measure-preserving and order-preserving. (However, it is not necessarily injective, and hence need not be invertible.) A similar map exists for $F$.
real-analysis measure-theory
add a comment |
Let $(lambda,Lambda)$ denote the Lebesgue measure space on $(0,infty)$. Suppose $E$ and $F$ are Lebesgue-measurable subsets of $(0,infty)$. A map $m:Fto E$ is called measure-presering whenever $lambda(m^{-1}(A))=lambda(A)$ for each measurable subset $A$ of $E$. It is called order-preserving if $aleq b$ in $F$ implies $m(a)leq m(b)$ in $E$. Denote by $mathbb{MO}(F,E)$ the set of all bijective maps $m:Fto E$ such that $m$ and $m^{-1}$ are both order-preserving and measure-preserving.
Fix $rin(0,infty)$. Let $W:(0,infty)to(0,infty)$ be a positive decreasing function and $f:(0,infty)to[0,infty)$ be a nonnegative function increasing on $(0,r]$ and zero on $(r,infty)$.
Conjecture. Suppose $Esubset(0,r]$ with $b=lambda(E)=lambda(F)leq r$, and $minmathbb{MO}(F,E)$. Then
$$int_0^inftylambda{xin(0,b]:f(t+r-b)W(t)>x};dtgeqint_0^inftylambda{xin F:(fcirc m)(t)W(t)>x};dt.$$
Or, equivalently,
$$int_0^bf(t+r-b)W(t);dtgeqint_F(fcirc m)(t)W(t);dt.$$
This seems intuitively obvious, and would be easy to prove if we were working in $mathbb{N}$ endowed with the counting measure instead of $(0,infty)$ endowed with the Lebesgue measure. Unfortunately, Lebesgue-measurable sets can be very ugly indeed, and so that makes working with them difficult sometimes.
The following may help.
Fact. There exists a surjection $tau:Eto[0,b]$ which is both measure-preserving and order-preserving. (However, it is not necessarily injective, and hence need not be invertible.) A similar map exists for $F$.
real-analysis measure-theory
Let $(lambda,Lambda)$ denote the Lebesgue measure space on $(0,infty)$. Suppose $E$ and $F$ are Lebesgue-measurable subsets of $(0,infty)$. A map $m:Fto E$ is called measure-presering whenever $lambda(m^{-1}(A))=lambda(A)$ for each measurable subset $A$ of $E$. It is called order-preserving if $aleq b$ in $F$ implies $m(a)leq m(b)$ in $E$. Denote by $mathbb{MO}(F,E)$ the set of all bijective maps $m:Fto E$ such that $m$ and $m^{-1}$ are both order-preserving and measure-preserving.
Fix $rin(0,infty)$. Let $W:(0,infty)to(0,infty)$ be a positive decreasing function and $f:(0,infty)to[0,infty)$ be a nonnegative function increasing on $(0,r]$ and zero on $(r,infty)$.
Conjecture. Suppose $Esubset(0,r]$ with $b=lambda(E)=lambda(F)leq r$, and $minmathbb{MO}(F,E)$. Then
$$int_0^inftylambda{xin(0,b]:f(t+r-b)W(t)>x};dtgeqint_0^inftylambda{xin F:(fcirc m)(t)W(t)>x};dt.$$
Or, equivalently,
$$int_0^bf(t+r-b)W(t);dtgeqint_F(fcirc m)(t)W(t);dt.$$
This seems intuitively obvious, and would be easy to prove if we were working in $mathbb{N}$ endowed with the counting measure instead of $(0,infty)$ endowed with the Lebesgue measure. Unfortunately, Lebesgue-measurable sets can be very ugly indeed, and so that makes working with them difficult sometimes.
The following may help.
Fact. There exists a surjection $tau:Eto[0,b]$ which is both measure-preserving and order-preserving. (However, it is not necessarily injective, and hence need not be invertible.) A similar map exists for $F$.
real-analysis measure-theory
real-analysis measure-theory
edited Nov 19 '18 at 13:32
asked Nov 19 '18 at 0:14
Ben W
1,423513
1,423513
add a comment |
add a comment |
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004320%2fmeasure-preserving-transformation-inequality%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004320%2fmeasure-preserving-transformation-inequality%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown