Solving $z^{1+i}=4$.
Solution:
Let $z=re^{itheta}=r(cos theta + isin theta)$. Then $z^{1+i}=e^{itheta(1+i)}=e^{itheta -theta}=4$. So $e^{itheta-theta}=e^{-theta}e^{itheta}=e^{-theta}(cos theta + isin theta)=4(cos 0 +isin 0) Longleftrightarrow e^{-theta}=4 quad text{and}quad theta =0$. But, $e^0 =1$. What am I doing wrong?
EDIT 10/26/18
Would like to provide a more systematic and traditional approach:
begin{align}
r^{1+i}e^{itheta(1+i)}&=r^{1+i}e^{-theta}(costheta + isintheta)=4(cos 0 +isin 0)=4\
r^{1+i}e^{-theta}&=4 quad text{and}quad theta=0\
log_e(r^{1+i}e^{-theta})&=log_{e}(4)\
log_(r^{1+i})+log(e^{-theta})&=log_{e}(4)\
(1+i)log_{e}(r)-theta&=log_{e}(4)\
log_{e}(r)&=frac{log_e(4)}{1+i}\
log_{e}(r)&=log_{e}(4^{frac{1}{1+i}})\
r&=4^{frac{1}{1+i}}\
r&=4^{frac{1-i}{2}}=[4^frac{1}{2}]^{1-i}=2^{1-i}
end{align}
complex-numbers
add a comment |
Solution:
Let $z=re^{itheta}=r(cos theta + isin theta)$. Then $z^{1+i}=e^{itheta(1+i)}=e^{itheta -theta}=4$. So $e^{itheta-theta}=e^{-theta}e^{itheta}=e^{-theta}(cos theta + isin theta)=4(cos 0 +isin 0) Longleftrightarrow e^{-theta}=4 quad text{and}quad theta =0$. But, $e^0 =1$. What am I doing wrong?
EDIT 10/26/18
Would like to provide a more systematic and traditional approach:
begin{align}
r^{1+i}e^{itheta(1+i)}&=r^{1+i}e^{-theta}(costheta + isintheta)=4(cos 0 +isin 0)=4\
r^{1+i}e^{-theta}&=4 quad text{and}quad theta=0\
log_e(r^{1+i}e^{-theta})&=log_{e}(4)\
log_(r^{1+i})+log(e^{-theta})&=log_{e}(4)\
(1+i)log_{e}(r)-theta&=log_{e}(4)\
log_{e}(r)&=frac{log_e(4)}{1+i}\
log_{e}(r)&=log_{e}(4^{frac{1}{1+i}})\
r&=4^{frac{1}{1+i}}\
r&=4^{frac{1-i}{2}}=[4^frac{1}{2}]^{1-i}=2^{1-i}
end{align}
complex-numbers
1
You completely forgot the $r^{1+i}$ part...
– b00n heT
Oct 24 '18 at 6:11
1
$z^{1+i}=r^{(1+i)} e^{itheta(1+i)}$
– G.H.lee
Oct 24 '18 at 6:11
1
What happened to $r$?
– Carsten S
Oct 24 '18 at 6:11
thanks. I'll redo it.
– TheLast Cipher
Oct 24 '18 at 6:12
add a comment |
Solution:
Let $z=re^{itheta}=r(cos theta + isin theta)$. Then $z^{1+i}=e^{itheta(1+i)}=e^{itheta -theta}=4$. So $e^{itheta-theta}=e^{-theta}e^{itheta}=e^{-theta}(cos theta + isin theta)=4(cos 0 +isin 0) Longleftrightarrow e^{-theta}=4 quad text{and}quad theta =0$. But, $e^0 =1$. What am I doing wrong?
EDIT 10/26/18
Would like to provide a more systematic and traditional approach:
begin{align}
r^{1+i}e^{itheta(1+i)}&=r^{1+i}e^{-theta}(costheta + isintheta)=4(cos 0 +isin 0)=4\
r^{1+i}e^{-theta}&=4 quad text{and}quad theta=0\
log_e(r^{1+i}e^{-theta})&=log_{e}(4)\
log_(r^{1+i})+log(e^{-theta})&=log_{e}(4)\
(1+i)log_{e}(r)-theta&=log_{e}(4)\
log_{e}(r)&=frac{log_e(4)}{1+i}\
log_{e}(r)&=log_{e}(4^{frac{1}{1+i}})\
r&=4^{frac{1}{1+i}}\
r&=4^{frac{1-i}{2}}=[4^frac{1}{2}]^{1-i}=2^{1-i}
end{align}
complex-numbers
Solution:
Let $z=re^{itheta}=r(cos theta + isin theta)$. Then $z^{1+i}=e^{itheta(1+i)}=e^{itheta -theta}=4$. So $e^{itheta-theta}=e^{-theta}e^{itheta}=e^{-theta}(cos theta + isin theta)=4(cos 0 +isin 0) Longleftrightarrow e^{-theta}=4 quad text{and}quad theta =0$. But, $e^0 =1$. What am I doing wrong?
EDIT 10/26/18
Would like to provide a more systematic and traditional approach:
begin{align}
r^{1+i}e^{itheta(1+i)}&=r^{1+i}e^{-theta}(costheta + isintheta)=4(cos 0 +isin 0)=4\
r^{1+i}e^{-theta}&=4 quad text{and}quad theta=0\
log_e(r^{1+i}e^{-theta})&=log_{e}(4)\
log_(r^{1+i})+log(e^{-theta})&=log_{e}(4)\
(1+i)log_{e}(r)-theta&=log_{e}(4)\
log_{e}(r)&=frac{log_e(4)}{1+i}\
log_{e}(r)&=log_{e}(4^{frac{1}{1+i}})\
r&=4^{frac{1}{1+i}}\
r&=4^{frac{1-i}{2}}=[4^frac{1}{2}]^{1-i}=2^{1-i}
end{align}
complex-numbers
complex-numbers
edited Oct 26 '18 at 5:16
asked Oct 24 '18 at 6:08
TheLast Cipher
690715
690715
1
You completely forgot the $r^{1+i}$ part...
– b00n heT
Oct 24 '18 at 6:11
1
$z^{1+i}=r^{(1+i)} e^{itheta(1+i)}$
– G.H.lee
Oct 24 '18 at 6:11
1
What happened to $r$?
– Carsten S
Oct 24 '18 at 6:11
thanks. I'll redo it.
– TheLast Cipher
Oct 24 '18 at 6:12
add a comment |
1
You completely forgot the $r^{1+i}$ part...
– b00n heT
Oct 24 '18 at 6:11
1
$z^{1+i}=r^{(1+i)} e^{itheta(1+i)}$
– G.H.lee
Oct 24 '18 at 6:11
1
What happened to $r$?
– Carsten S
Oct 24 '18 at 6:11
thanks. I'll redo it.
– TheLast Cipher
Oct 24 '18 at 6:12
1
1
You completely forgot the $r^{1+i}$ part...
– b00n heT
Oct 24 '18 at 6:11
You completely forgot the $r^{1+i}$ part...
– b00n heT
Oct 24 '18 at 6:11
1
1
$z^{1+i}=r^{(1+i)} e^{itheta(1+i)}$
– G.H.lee
Oct 24 '18 at 6:11
$z^{1+i}=r^{(1+i)} e^{itheta(1+i)}$
– G.H.lee
Oct 24 '18 at 6:11
1
1
What happened to $r$?
– Carsten S
Oct 24 '18 at 6:11
What happened to $r$?
– Carsten S
Oct 24 '18 at 6:11
thanks. I'll redo it.
– TheLast Cipher
Oct 24 '18 at 6:12
thanks. I'll redo it.
– TheLast Cipher
Oct 24 '18 at 6:12
add a comment |
3 Answers
3
active
oldest
votes
$$4 = 2^2 = z^{1 + i}$$
$$2 log 2 = (1+i) log z$$
$${2 over 1+i} log 2 = log z$$
$$2^{2 over 1 + i} = z$$
$$2^{2(1-i) over (1+i)(1-i)}$$
$$2^{2(1-i) over 2} = z$$
$$2^{1 - i} = z$$
Check:
$$left( 2^{1-i}right)^{1+i} = 2^{1+1} = 2^2 = 4$$
$$pm2=z^{(1+i)/2},(pm2)^{1-i}=?$$
– lab bhattacharjee
Oct 24 '18 at 6:37
add a comment |
$4=2^2$
$2=(1-i)(1+i)$
$z^{1+i}=2^{(1-i)(1+i)}$
Taking $1+i$ th root of both sides we get:
$z=2^{1-i}$
add a comment |
A systematic way would go like this. Let the power function be defined as $z^a = e^{a ln z}$ and the logarithm be defined as $ln z = ln |z| + i arg z, , -pi < arg z leq pi$. $e^z$ is periodic with period $2 pi i$, therefore
$$z^c = w ,Leftrightarrow,
e^{c ln z} = e^{ln w} ,Leftrightarrow,
c ln z = ln w + 2 pi i k ,Leftrightarrow \
ln |z| + i arg z =
operatorname{Re} zeta + i operatorname{Im} zeta ,Leftrightarrow \
z = e^zeta land -pi < operatorname{Im} zeta leq pi, \
text{where } zeta = frac {ln w + 2 pi i k} c,
;k in mathbb Z.$$
The number of solutions will depend on $c$ and $w$. Substituting $c = 1 + i, , w = 4$ gives $-pi < pi k - ln 2 leq pi$, therefore there are two solutions $z = 2^{1 - i}$ and $z = -2^{1 - i} e^pi$, corresponding to $k = 0$ and $k = 1$.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2968747%2fsolving-z1i-4%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$$4 = 2^2 = z^{1 + i}$$
$$2 log 2 = (1+i) log z$$
$${2 over 1+i} log 2 = log z$$
$$2^{2 over 1 + i} = z$$
$$2^{2(1-i) over (1+i)(1-i)}$$
$$2^{2(1-i) over 2} = z$$
$$2^{1 - i} = z$$
Check:
$$left( 2^{1-i}right)^{1+i} = 2^{1+1} = 2^2 = 4$$
$$pm2=z^{(1+i)/2},(pm2)^{1-i}=?$$
– lab bhattacharjee
Oct 24 '18 at 6:37
add a comment |
$$4 = 2^2 = z^{1 + i}$$
$$2 log 2 = (1+i) log z$$
$${2 over 1+i} log 2 = log z$$
$$2^{2 over 1 + i} = z$$
$$2^{2(1-i) over (1+i)(1-i)}$$
$$2^{2(1-i) over 2} = z$$
$$2^{1 - i} = z$$
Check:
$$left( 2^{1-i}right)^{1+i} = 2^{1+1} = 2^2 = 4$$
$$pm2=z^{(1+i)/2},(pm2)^{1-i}=?$$
– lab bhattacharjee
Oct 24 '18 at 6:37
add a comment |
$$4 = 2^2 = z^{1 + i}$$
$$2 log 2 = (1+i) log z$$
$${2 over 1+i} log 2 = log z$$
$$2^{2 over 1 + i} = z$$
$$2^{2(1-i) over (1+i)(1-i)}$$
$$2^{2(1-i) over 2} = z$$
$$2^{1 - i} = z$$
Check:
$$left( 2^{1-i}right)^{1+i} = 2^{1+1} = 2^2 = 4$$
$$4 = 2^2 = z^{1 + i}$$
$$2 log 2 = (1+i) log z$$
$${2 over 1+i} log 2 = log z$$
$$2^{2 over 1 + i} = z$$
$$2^{2(1-i) over (1+i)(1-i)}$$
$$2^{2(1-i) over 2} = z$$
$$2^{1 - i} = z$$
Check:
$$left( 2^{1-i}right)^{1+i} = 2^{1+1} = 2^2 = 4$$
edited Oct 24 '18 at 6:38
answered Oct 24 '18 at 6:31
David G. Stork
9,78721232
9,78721232
$$pm2=z^{(1+i)/2},(pm2)^{1-i}=?$$
– lab bhattacharjee
Oct 24 '18 at 6:37
add a comment |
$$pm2=z^{(1+i)/2},(pm2)^{1-i}=?$$
– lab bhattacharjee
Oct 24 '18 at 6:37
$$pm2=z^{(1+i)/2},(pm2)^{1-i}=?$$
– lab bhattacharjee
Oct 24 '18 at 6:37
$$pm2=z^{(1+i)/2},(pm2)^{1-i}=?$$
– lab bhattacharjee
Oct 24 '18 at 6:37
add a comment |
$4=2^2$
$2=(1-i)(1+i)$
$z^{1+i}=2^{(1-i)(1+i)}$
Taking $1+i$ th root of both sides we get:
$z=2^{1-i}$
add a comment |
$4=2^2$
$2=(1-i)(1+i)$
$z^{1+i}=2^{(1-i)(1+i)}$
Taking $1+i$ th root of both sides we get:
$z=2^{1-i}$
add a comment |
$4=2^2$
$2=(1-i)(1+i)$
$z^{1+i}=2^{(1-i)(1+i)}$
Taking $1+i$ th root of both sides we get:
$z=2^{1-i}$
$4=2^2$
$2=(1-i)(1+i)$
$z^{1+i}=2^{(1-i)(1+i)}$
Taking $1+i$ th root of both sides we get:
$z=2^{1-i}$
answered Oct 24 '18 at 6:39
sirous
1,5991513
1,5991513
add a comment |
add a comment |
A systematic way would go like this. Let the power function be defined as $z^a = e^{a ln z}$ and the logarithm be defined as $ln z = ln |z| + i arg z, , -pi < arg z leq pi$. $e^z$ is periodic with period $2 pi i$, therefore
$$z^c = w ,Leftrightarrow,
e^{c ln z} = e^{ln w} ,Leftrightarrow,
c ln z = ln w + 2 pi i k ,Leftrightarrow \
ln |z| + i arg z =
operatorname{Re} zeta + i operatorname{Im} zeta ,Leftrightarrow \
z = e^zeta land -pi < operatorname{Im} zeta leq pi, \
text{where } zeta = frac {ln w + 2 pi i k} c,
;k in mathbb Z.$$
The number of solutions will depend on $c$ and $w$. Substituting $c = 1 + i, , w = 4$ gives $-pi < pi k - ln 2 leq pi$, therefore there are two solutions $z = 2^{1 - i}$ and $z = -2^{1 - i} e^pi$, corresponding to $k = 0$ and $k = 1$.
add a comment |
A systematic way would go like this. Let the power function be defined as $z^a = e^{a ln z}$ and the logarithm be defined as $ln z = ln |z| + i arg z, , -pi < arg z leq pi$. $e^z$ is periodic with period $2 pi i$, therefore
$$z^c = w ,Leftrightarrow,
e^{c ln z} = e^{ln w} ,Leftrightarrow,
c ln z = ln w + 2 pi i k ,Leftrightarrow \
ln |z| + i arg z =
operatorname{Re} zeta + i operatorname{Im} zeta ,Leftrightarrow \
z = e^zeta land -pi < operatorname{Im} zeta leq pi, \
text{where } zeta = frac {ln w + 2 pi i k} c,
;k in mathbb Z.$$
The number of solutions will depend on $c$ and $w$. Substituting $c = 1 + i, , w = 4$ gives $-pi < pi k - ln 2 leq pi$, therefore there are two solutions $z = 2^{1 - i}$ and $z = -2^{1 - i} e^pi$, corresponding to $k = 0$ and $k = 1$.
add a comment |
A systematic way would go like this. Let the power function be defined as $z^a = e^{a ln z}$ and the logarithm be defined as $ln z = ln |z| + i arg z, , -pi < arg z leq pi$. $e^z$ is periodic with period $2 pi i$, therefore
$$z^c = w ,Leftrightarrow,
e^{c ln z} = e^{ln w} ,Leftrightarrow,
c ln z = ln w + 2 pi i k ,Leftrightarrow \
ln |z| + i arg z =
operatorname{Re} zeta + i operatorname{Im} zeta ,Leftrightarrow \
z = e^zeta land -pi < operatorname{Im} zeta leq pi, \
text{where } zeta = frac {ln w + 2 pi i k} c,
;k in mathbb Z.$$
The number of solutions will depend on $c$ and $w$. Substituting $c = 1 + i, , w = 4$ gives $-pi < pi k - ln 2 leq pi$, therefore there are two solutions $z = 2^{1 - i}$ and $z = -2^{1 - i} e^pi$, corresponding to $k = 0$ and $k = 1$.
A systematic way would go like this. Let the power function be defined as $z^a = e^{a ln z}$ and the logarithm be defined as $ln z = ln |z| + i arg z, , -pi < arg z leq pi$. $e^z$ is periodic with period $2 pi i$, therefore
$$z^c = w ,Leftrightarrow,
e^{c ln z} = e^{ln w} ,Leftrightarrow,
c ln z = ln w + 2 pi i k ,Leftrightarrow \
ln |z| + i arg z =
operatorname{Re} zeta + i operatorname{Im} zeta ,Leftrightarrow \
z = e^zeta land -pi < operatorname{Im} zeta leq pi, \
text{where } zeta = frac {ln w + 2 pi i k} c,
;k in mathbb Z.$$
The number of solutions will depend on $c$ and $w$. Substituting $c = 1 + i, , w = 4$ gives $-pi < pi k - ln 2 leq pi$, therefore there are two solutions $z = 2^{1 - i}$ and $z = -2^{1 - i} e^pi$, corresponding to $k = 0$ and $k = 1$.
answered Nov 19 '18 at 4:15
Maxim
4,5031219
4,5031219
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2968747%2fsolving-z1i-4%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
You completely forgot the $r^{1+i}$ part...
– b00n heT
Oct 24 '18 at 6:11
1
$z^{1+i}=r^{(1+i)} e^{itheta(1+i)}$
– G.H.lee
Oct 24 '18 at 6:11
1
What happened to $r$?
– Carsten S
Oct 24 '18 at 6:11
thanks. I'll redo it.
– TheLast Cipher
Oct 24 '18 at 6:12