Alternative proof for existence of nth roots
up vote
0
down vote
favorite
The Proofs I have seen so far are using the fact (Completeness Axiom) that every non-empty set in $mathbb{R}$ with an upperbound also has a Supremum. However there are Theorems/Propositions (I don't know the difference) which are equivalent to the Completeness Axiom.
For example that $mathbb{R}$ has no gaps
[[section$:= mathbb{Q}= Acoprod B ,A:={qin mathbb{Q|qleqmathbb{r}}},B:={qinmathbb{Q}|q>r},rinmathbb{R}$]gap:=section if $r$ is irrational]
Or that nested Intervalls $(I_i)_{iin mathbb {N}}$ always converge to a unique number $r$ in $mathbb{R}$ such that $r in I_i,forall iinmathbb{N}$
I want to ask you if my proof using nested Intervalls is correct.
Let $kinmathbb{N},cinmathbb{R}$
Define sequence recurisively : $(I_i)_{iinmathbb{N}}=([a_i,b_i])_{iinmathbb{N}}$
$I_1:= [0,|c|+1]$
$I_{n+1}:=[frac{a_n + b_n}{2},b_n]$, if $(frac{a_n + b_n}{2})^kleq |c|$
$I_{n+1}:=[a_n,frac{a_n + b_n}{2}]$, if $(frac{a_n + b_n}{2})^kgeq |c|$
To Show: $a) a_1leq...a_nleq b_n ... leq b_1$ and $b)|b_n - a_n| rightarrow 0$
$a)$
Inductionbase: $0<|c|+1$ True
Inductionstep:
If $(frac{a_n + b_n}{2})^kleq |c|$ then $a_{n+1} = frac{a_n + b_n}{2},b_{n+1}= b_n$, IH $Rightarrow a_nleq b_nRightarrow a_nleq a_{n+1},a_{n+1}leq b_{n+1}$
If $(frac{a_n + b_n}{2})^kgeq |c|$ then $a_{n+1}=a_n,b_{n+1} = frac{a_n + b_n}{2}$, IH $Rightarrow a_nleq b_nRightarrow a_nleq a_{n+1},a_{n+1}leq b_{n+1}$
$Rightarrow a_1leq...a_nleq b_n ... leq b_1$
$b)$
$a)Rightarrow |b_n-a_n|geq |b_{n+1}-a_{n+1}|=: |b_n - frac{a_n + b_n}{2}|$ or $|frac{a_n + b_n}{2}-a_n|$
In both cases $|b_{n+1}-a_{n+1}|= |frac{b_n-a_n}{2}|$
The successor is always half the value of the predecessor therefore $|b_n-a_n|$ must coverge to $0$
$|b_n - a_n| rightarrow 0$
Because nested intervals converge to a unique number = $x$, this number must be the root since
$a_nleq x leq b_n, forall nin mathbb{N},(a_n)^kleq |c| leq (b_n)^k, forall nin mathbb{N}Rightarrow x^k=|c|$
q.e.d ?
sequences-and-series proof-verification alternative-proof
add a comment |
up vote
0
down vote
favorite
The Proofs I have seen so far are using the fact (Completeness Axiom) that every non-empty set in $mathbb{R}$ with an upperbound also has a Supremum. However there are Theorems/Propositions (I don't know the difference) which are equivalent to the Completeness Axiom.
For example that $mathbb{R}$ has no gaps
[[section$:= mathbb{Q}= Acoprod B ,A:={qin mathbb{Q|qleqmathbb{r}}},B:={qinmathbb{Q}|q>r},rinmathbb{R}$]gap:=section if $r$ is irrational]
Or that nested Intervalls $(I_i)_{iin mathbb {N}}$ always converge to a unique number $r$ in $mathbb{R}$ such that $r in I_i,forall iinmathbb{N}$
I want to ask you if my proof using nested Intervalls is correct.
Let $kinmathbb{N},cinmathbb{R}$
Define sequence recurisively : $(I_i)_{iinmathbb{N}}=([a_i,b_i])_{iinmathbb{N}}$
$I_1:= [0,|c|+1]$
$I_{n+1}:=[frac{a_n + b_n}{2},b_n]$, if $(frac{a_n + b_n}{2})^kleq |c|$
$I_{n+1}:=[a_n,frac{a_n + b_n}{2}]$, if $(frac{a_n + b_n}{2})^kgeq |c|$
To Show: $a) a_1leq...a_nleq b_n ... leq b_1$ and $b)|b_n - a_n| rightarrow 0$
$a)$
Inductionbase: $0<|c|+1$ True
Inductionstep:
If $(frac{a_n + b_n}{2})^kleq |c|$ then $a_{n+1} = frac{a_n + b_n}{2},b_{n+1}= b_n$, IH $Rightarrow a_nleq b_nRightarrow a_nleq a_{n+1},a_{n+1}leq b_{n+1}$
If $(frac{a_n + b_n}{2})^kgeq |c|$ then $a_{n+1}=a_n,b_{n+1} = frac{a_n + b_n}{2}$, IH $Rightarrow a_nleq b_nRightarrow a_nleq a_{n+1},a_{n+1}leq b_{n+1}$
$Rightarrow a_1leq...a_nleq b_n ... leq b_1$
$b)$
$a)Rightarrow |b_n-a_n|geq |b_{n+1}-a_{n+1}|=: |b_n - frac{a_n + b_n}{2}|$ or $|frac{a_n + b_n}{2}-a_n|$
In both cases $|b_{n+1}-a_{n+1}|= |frac{b_n-a_n}{2}|$
The successor is always half the value of the predecessor therefore $|b_n-a_n|$ must coverge to $0$
$|b_n - a_n| rightarrow 0$
Because nested intervals converge to a unique number = $x$, this number must be the root since
$a_nleq x leq b_n, forall nin mathbb{N},(a_n)^kleq |c| leq (b_n)^k, forall nin mathbb{N}Rightarrow x^k=|c|$
q.e.d ?
sequences-and-series proof-verification alternative-proof
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
The Proofs I have seen so far are using the fact (Completeness Axiom) that every non-empty set in $mathbb{R}$ with an upperbound also has a Supremum. However there are Theorems/Propositions (I don't know the difference) which are equivalent to the Completeness Axiom.
For example that $mathbb{R}$ has no gaps
[[section$:= mathbb{Q}= Acoprod B ,A:={qin mathbb{Q|qleqmathbb{r}}},B:={qinmathbb{Q}|q>r},rinmathbb{R}$]gap:=section if $r$ is irrational]
Or that nested Intervalls $(I_i)_{iin mathbb {N}}$ always converge to a unique number $r$ in $mathbb{R}$ such that $r in I_i,forall iinmathbb{N}$
I want to ask you if my proof using nested Intervalls is correct.
Let $kinmathbb{N},cinmathbb{R}$
Define sequence recurisively : $(I_i)_{iinmathbb{N}}=([a_i,b_i])_{iinmathbb{N}}$
$I_1:= [0,|c|+1]$
$I_{n+1}:=[frac{a_n + b_n}{2},b_n]$, if $(frac{a_n + b_n}{2})^kleq |c|$
$I_{n+1}:=[a_n,frac{a_n + b_n}{2}]$, if $(frac{a_n + b_n}{2})^kgeq |c|$
To Show: $a) a_1leq...a_nleq b_n ... leq b_1$ and $b)|b_n - a_n| rightarrow 0$
$a)$
Inductionbase: $0<|c|+1$ True
Inductionstep:
If $(frac{a_n + b_n}{2})^kleq |c|$ then $a_{n+1} = frac{a_n + b_n}{2},b_{n+1}= b_n$, IH $Rightarrow a_nleq b_nRightarrow a_nleq a_{n+1},a_{n+1}leq b_{n+1}$
If $(frac{a_n + b_n}{2})^kgeq |c|$ then $a_{n+1}=a_n,b_{n+1} = frac{a_n + b_n}{2}$, IH $Rightarrow a_nleq b_nRightarrow a_nleq a_{n+1},a_{n+1}leq b_{n+1}$
$Rightarrow a_1leq...a_nleq b_n ... leq b_1$
$b)$
$a)Rightarrow |b_n-a_n|geq |b_{n+1}-a_{n+1}|=: |b_n - frac{a_n + b_n}{2}|$ or $|frac{a_n + b_n}{2}-a_n|$
In both cases $|b_{n+1}-a_{n+1}|= |frac{b_n-a_n}{2}|$
The successor is always half the value of the predecessor therefore $|b_n-a_n|$ must coverge to $0$
$|b_n - a_n| rightarrow 0$
Because nested intervals converge to a unique number = $x$, this number must be the root since
$a_nleq x leq b_n, forall nin mathbb{N},(a_n)^kleq |c| leq (b_n)^k, forall nin mathbb{N}Rightarrow x^k=|c|$
q.e.d ?
sequences-and-series proof-verification alternative-proof
The Proofs I have seen so far are using the fact (Completeness Axiom) that every non-empty set in $mathbb{R}$ with an upperbound also has a Supremum. However there are Theorems/Propositions (I don't know the difference) which are equivalent to the Completeness Axiom.
For example that $mathbb{R}$ has no gaps
[[section$:= mathbb{Q}= Acoprod B ,A:={qin mathbb{Q|qleqmathbb{r}}},B:={qinmathbb{Q}|q>r},rinmathbb{R}$]gap:=section if $r$ is irrational]
Or that nested Intervalls $(I_i)_{iin mathbb {N}}$ always converge to a unique number $r$ in $mathbb{R}$ such that $r in I_i,forall iinmathbb{N}$
I want to ask you if my proof using nested Intervalls is correct.
Let $kinmathbb{N},cinmathbb{R}$
Define sequence recurisively : $(I_i)_{iinmathbb{N}}=([a_i,b_i])_{iinmathbb{N}}$
$I_1:= [0,|c|+1]$
$I_{n+1}:=[frac{a_n + b_n}{2},b_n]$, if $(frac{a_n + b_n}{2})^kleq |c|$
$I_{n+1}:=[a_n,frac{a_n + b_n}{2}]$, if $(frac{a_n + b_n}{2})^kgeq |c|$
To Show: $a) a_1leq...a_nleq b_n ... leq b_1$ and $b)|b_n - a_n| rightarrow 0$
$a)$
Inductionbase: $0<|c|+1$ True
Inductionstep:
If $(frac{a_n + b_n}{2})^kleq |c|$ then $a_{n+1} = frac{a_n + b_n}{2},b_{n+1}= b_n$, IH $Rightarrow a_nleq b_nRightarrow a_nleq a_{n+1},a_{n+1}leq b_{n+1}$
If $(frac{a_n + b_n}{2})^kgeq |c|$ then $a_{n+1}=a_n,b_{n+1} = frac{a_n + b_n}{2}$, IH $Rightarrow a_nleq b_nRightarrow a_nleq a_{n+1},a_{n+1}leq b_{n+1}$
$Rightarrow a_1leq...a_nleq b_n ... leq b_1$
$b)$
$a)Rightarrow |b_n-a_n|geq |b_{n+1}-a_{n+1}|=: |b_n - frac{a_n + b_n}{2}|$ or $|frac{a_n + b_n}{2}-a_n|$
In both cases $|b_{n+1}-a_{n+1}|= |frac{b_n-a_n}{2}|$
The successor is always half the value of the predecessor therefore $|b_n-a_n|$ must coverge to $0$
$|b_n - a_n| rightarrow 0$
Because nested intervals converge to a unique number = $x$, this number must be the root since
$a_nleq x leq b_n, forall nin mathbb{N},(a_n)^kleq |c| leq (b_n)^k, forall nin mathbb{N}Rightarrow x^k=|c|$
q.e.d ?
sequences-and-series proof-verification alternative-proof
sequences-and-series proof-verification alternative-proof
edited Nov 17 at 19:16
asked Nov 17 at 13:39
RM777
1158
1158
add a comment |
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3002378%2falternative-proof-for-existence-of-nth-roots%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown