Alternative proof for existence of nth roots











up vote
0
down vote

favorite












The Proofs I have seen so far are using the fact (Completeness Axiom) that every non-empty set in $mathbb{R}$ with an upperbound also has a Supremum. However there are Theorems/Propositions (I don't know the difference) which are equivalent to the Completeness Axiom.



For example that $mathbb{R}$ has no gaps

[[section$:= mathbb{Q}= Acoprod B ,A:={qin mathbb{Q|qleqmathbb{r}}},B:={qinmathbb{Q}|q>r},rinmathbb{R}$]gap:=section if $r$ is irrational]



Or that nested Intervalls $(I_i)_{iin mathbb {N}}$ always converge to a unique number $r$ in $mathbb{R}$ such that $r in I_i,forall iinmathbb{N}$



I want to ask you if my proof using nested Intervalls is correct.



Let $kinmathbb{N},cinmathbb{R}$



Define sequence recurisively : $(I_i)_{iinmathbb{N}}=([a_i,b_i])_{iinmathbb{N}}$



$I_1:= [0,|c|+1]$



$I_{n+1}:=[frac{a_n + b_n}{2},b_n]$, if $(frac{a_n + b_n}{2})^kleq |c|$



$I_{n+1}:=[a_n,frac{a_n + b_n}{2}]$, if $(frac{a_n + b_n}{2})^kgeq |c|$



To Show: $a) a_1leq...a_nleq b_n ... leq b_1$ and $b)|b_n - a_n| rightarrow 0$



$a)$



Inductionbase: $0<|c|+1$ True



Inductionstep:



If $(frac{a_n + b_n}{2})^kleq |c|$ then $a_{n+1} = frac{a_n + b_n}{2},b_{n+1}= b_n$, IH $Rightarrow a_nleq b_nRightarrow a_nleq a_{n+1},a_{n+1}leq b_{n+1}$



If $(frac{a_n + b_n}{2})^kgeq |c|$ then $a_{n+1}=a_n,b_{n+1} = frac{a_n + b_n}{2}$, IH $Rightarrow a_nleq b_nRightarrow a_nleq a_{n+1},a_{n+1}leq b_{n+1}$



$Rightarrow a_1leq...a_nleq b_n ... leq b_1$



$b)$



$a)Rightarrow |b_n-a_n|geq |b_{n+1}-a_{n+1}|=: |b_n - frac{a_n + b_n}{2}|$ or $|frac{a_n + b_n}{2}-a_n|$



In both cases $|b_{n+1}-a_{n+1}|= |frac{b_n-a_n}{2}|$



The successor is always half the value of the predecessor therefore $|b_n-a_n|$ must coverge to $0$



$|b_n - a_n| rightarrow 0$



Because nested intervals converge to a unique number = $x$, this number must be the root since



$a_nleq x leq b_n, forall nin mathbb{N},(a_n)^kleq |c| leq (b_n)^k, forall nin mathbb{N}Rightarrow x^k=|c|$



q.e.d ?










share|cite|improve this question




























    up vote
    0
    down vote

    favorite












    The Proofs I have seen so far are using the fact (Completeness Axiom) that every non-empty set in $mathbb{R}$ with an upperbound also has a Supremum. However there are Theorems/Propositions (I don't know the difference) which are equivalent to the Completeness Axiom.



    For example that $mathbb{R}$ has no gaps

    [[section$:= mathbb{Q}= Acoprod B ,A:={qin mathbb{Q|qleqmathbb{r}}},B:={qinmathbb{Q}|q>r},rinmathbb{R}$]gap:=section if $r$ is irrational]



    Or that nested Intervalls $(I_i)_{iin mathbb {N}}$ always converge to a unique number $r$ in $mathbb{R}$ such that $r in I_i,forall iinmathbb{N}$



    I want to ask you if my proof using nested Intervalls is correct.



    Let $kinmathbb{N},cinmathbb{R}$



    Define sequence recurisively : $(I_i)_{iinmathbb{N}}=([a_i,b_i])_{iinmathbb{N}}$



    $I_1:= [0,|c|+1]$



    $I_{n+1}:=[frac{a_n + b_n}{2},b_n]$, if $(frac{a_n + b_n}{2})^kleq |c|$



    $I_{n+1}:=[a_n,frac{a_n + b_n}{2}]$, if $(frac{a_n + b_n}{2})^kgeq |c|$



    To Show: $a) a_1leq...a_nleq b_n ... leq b_1$ and $b)|b_n - a_n| rightarrow 0$



    $a)$



    Inductionbase: $0<|c|+1$ True



    Inductionstep:



    If $(frac{a_n + b_n}{2})^kleq |c|$ then $a_{n+1} = frac{a_n + b_n}{2},b_{n+1}= b_n$, IH $Rightarrow a_nleq b_nRightarrow a_nleq a_{n+1},a_{n+1}leq b_{n+1}$



    If $(frac{a_n + b_n}{2})^kgeq |c|$ then $a_{n+1}=a_n,b_{n+1} = frac{a_n + b_n}{2}$, IH $Rightarrow a_nleq b_nRightarrow a_nleq a_{n+1},a_{n+1}leq b_{n+1}$



    $Rightarrow a_1leq...a_nleq b_n ... leq b_1$



    $b)$



    $a)Rightarrow |b_n-a_n|geq |b_{n+1}-a_{n+1}|=: |b_n - frac{a_n + b_n}{2}|$ or $|frac{a_n + b_n}{2}-a_n|$



    In both cases $|b_{n+1}-a_{n+1}|= |frac{b_n-a_n}{2}|$



    The successor is always half the value of the predecessor therefore $|b_n-a_n|$ must coverge to $0$



    $|b_n - a_n| rightarrow 0$



    Because nested intervals converge to a unique number = $x$, this number must be the root since



    $a_nleq x leq b_n, forall nin mathbb{N},(a_n)^kleq |c| leq (b_n)^k, forall nin mathbb{N}Rightarrow x^k=|c|$



    q.e.d ?










    share|cite|improve this question


























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      The Proofs I have seen so far are using the fact (Completeness Axiom) that every non-empty set in $mathbb{R}$ with an upperbound also has a Supremum. However there are Theorems/Propositions (I don't know the difference) which are equivalent to the Completeness Axiom.



      For example that $mathbb{R}$ has no gaps

      [[section$:= mathbb{Q}= Acoprod B ,A:={qin mathbb{Q|qleqmathbb{r}}},B:={qinmathbb{Q}|q>r},rinmathbb{R}$]gap:=section if $r$ is irrational]



      Or that nested Intervalls $(I_i)_{iin mathbb {N}}$ always converge to a unique number $r$ in $mathbb{R}$ such that $r in I_i,forall iinmathbb{N}$



      I want to ask you if my proof using nested Intervalls is correct.



      Let $kinmathbb{N},cinmathbb{R}$



      Define sequence recurisively : $(I_i)_{iinmathbb{N}}=([a_i,b_i])_{iinmathbb{N}}$



      $I_1:= [0,|c|+1]$



      $I_{n+1}:=[frac{a_n + b_n}{2},b_n]$, if $(frac{a_n + b_n}{2})^kleq |c|$



      $I_{n+1}:=[a_n,frac{a_n + b_n}{2}]$, if $(frac{a_n + b_n}{2})^kgeq |c|$



      To Show: $a) a_1leq...a_nleq b_n ... leq b_1$ and $b)|b_n - a_n| rightarrow 0$



      $a)$



      Inductionbase: $0<|c|+1$ True



      Inductionstep:



      If $(frac{a_n + b_n}{2})^kleq |c|$ then $a_{n+1} = frac{a_n + b_n}{2},b_{n+1}= b_n$, IH $Rightarrow a_nleq b_nRightarrow a_nleq a_{n+1},a_{n+1}leq b_{n+1}$



      If $(frac{a_n + b_n}{2})^kgeq |c|$ then $a_{n+1}=a_n,b_{n+1} = frac{a_n + b_n}{2}$, IH $Rightarrow a_nleq b_nRightarrow a_nleq a_{n+1},a_{n+1}leq b_{n+1}$



      $Rightarrow a_1leq...a_nleq b_n ... leq b_1$



      $b)$



      $a)Rightarrow |b_n-a_n|geq |b_{n+1}-a_{n+1}|=: |b_n - frac{a_n + b_n}{2}|$ or $|frac{a_n + b_n}{2}-a_n|$



      In both cases $|b_{n+1}-a_{n+1}|= |frac{b_n-a_n}{2}|$



      The successor is always half the value of the predecessor therefore $|b_n-a_n|$ must coverge to $0$



      $|b_n - a_n| rightarrow 0$



      Because nested intervals converge to a unique number = $x$, this number must be the root since



      $a_nleq x leq b_n, forall nin mathbb{N},(a_n)^kleq |c| leq (b_n)^k, forall nin mathbb{N}Rightarrow x^k=|c|$



      q.e.d ?










      share|cite|improve this question















      The Proofs I have seen so far are using the fact (Completeness Axiom) that every non-empty set in $mathbb{R}$ with an upperbound also has a Supremum. However there are Theorems/Propositions (I don't know the difference) which are equivalent to the Completeness Axiom.



      For example that $mathbb{R}$ has no gaps

      [[section$:= mathbb{Q}= Acoprod B ,A:={qin mathbb{Q|qleqmathbb{r}}},B:={qinmathbb{Q}|q>r},rinmathbb{R}$]gap:=section if $r$ is irrational]



      Or that nested Intervalls $(I_i)_{iin mathbb {N}}$ always converge to a unique number $r$ in $mathbb{R}$ such that $r in I_i,forall iinmathbb{N}$



      I want to ask you if my proof using nested Intervalls is correct.



      Let $kinmathbb{N},cinmathbb{R}$



      Define sequence recurisively : $(I_i)_{iinmathbb{N}}=([a_i,b_i])_{iinmathbb{N}}$



      $I_1:= [0,|c|+1]$



      $I_{n+1}:=[frac{a_n + b_n}{2},b_n]$, if $(frac{a_n + b_n}{2})^kleq |c|$



      $I_{n+1}:=[a_n,frac{a_n + b_n}{2}]$, if $(frac{a_n + b_n}{2})^kgeq |c|$



      To Show: $a) a_1leq...a_nleq b_n ... leq b_1$ and $b)|b_n - a_n| rightarrow 0$



      $a)$



      Inductionbase: $0<|c|+1$ True



      Inductionstep:



      If $(frac{a_n + b_n}{2})^kleq |c|$ then $a_{n+1} = frac{a_n + b_n}{2},b_{n+1}= b_n$, IH $Rightarrow a_nleq b_nRightarrow a_nleq a_{n+1},a_{n+1}leq b_{n+1}$



      If $(frac{a_n + b_n}{2})^kgeq |c|$ then $a_{n+1}=a_n,b_{n+1} = frac{a_n + b_n}{2}$, IH $Rightarrow a_nleq b_nRightarrow a_nleq a_{n+1},a_{n+1}leq b_{n+1}$



      $Rightarrow a_1leq...a_nleq b_n ... leq b_1$



      $b)$



      $a)Rightarrow |b_n-a_n|geq |b_{n+1}-a_{n+1}|=: |b_n - frac{a_n + b_n}{2}|$ or $|frac{a_n + b_n}{2}-a_n|$



      In both cases $|b_{n+1}-a_{n+1}|= |frac{b_n-a_n}{2}|$



      The successor is always half the value of the predecessor therefore $|b_n-a_n|$ must coverge to $0$



      $|b_n - a_n| rightarrow 0$



      Because nested intervals converge to a unique number = $x$, this number must be the root since



      $a_nleq x leq b_n, forall nin mathbb{N},(a_n)^kleq |c| leq (b_n)^k, forall nin mathbb{N}Rightarrow x^k=|c|$



      q.e.d ?







      sequences-and-series proof-verification alternative-proof






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 17 at 19:16

























      asked Nov 17 at 13:39









      RM777

      1158




      1158



























          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3002378%2falternative-proof-for-existence-of-nth-roots%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3002378%2falternative-proof-for-existence-of-nth-roots%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          AnyDesk - Fatal Program Failure

          How to calibrate 16:9 built-in touch-screen to a 4:3 resolution?

          QoS: MAC-Priority for clients behind a repeater