Solution of complex differential equation involving $2$ variables
up vote
1
down vote
favorite
Solve the differential equation
$displaystyle frac{dy}{dx} = sqrt{frac{1}{2}+int^{-sin^4
theta}_{cos^4 theta}frac{sqrt{f(phi)}dphi}{sqrt{f(theta)}+sqrt{f(cos 2 theta-phi)}}},$
where $theta = x+y$ and $displaystyle x+yin bigg(frac{pi}{4};,frac{3pi}{4}bigg)$
Try: First we will sove $$I = int^{-sin^4
theta}_{cos^4 theta}frac{sqrt{f(phi)}dphi}{sqrt{f(theta)}+sqrt{f(cos 2 theta-phi)}}cdots cdots (1)$$
Replace $phi = cos^4 theta-sin^4 theta-phi = cos (2theta)-phi.$
So $$I = int^{-sin^4
theta}_{cos^4 theta}frac{sqrt{f(cos 2 theta -phi)}dphi}{sqrt{f(theta)}+sqrt{f(cos 2 theta-phi)}}cdots (2)$$
So $$2I = int^{-sin^4 theta}_{cos^4 theta}dphi = phibigg|^{-sin^4 theta}_{cos^4 theta}$$
$$I = frac{1}{2}bigg[sin^4 theta +cos ^4 thetabigg] = frac{1}{2}-sin^2 theta cos^2 theta$$
So $$frac{dy}{dx} = sqrt{1-sin^2 theta cos^2 theta}$$
could some help me how to solve further, i don,t get any clue
thanks
answer given as $displaystyle frac{2}{sqrt{3}}tan^{-1}bigg(frac{2tan(x+y)+1}{sqrt{3}}bigg)=x+c.$
differential-equations
add a comment |
up vote
1
down vote
favorite
Solve the differential equation
$displaystyle frac{dy}{dx} = sqrt{frac{1}{2}+int^{-sin^4
theta}_{cos^4 theta}frac{sqrt{f(phi)}dphi}{sqrt{f(theta)}+sqrt{f(cos 2 theta-phi)}}},$
where $theta = x+y$ and $displaystyle x+yin bigg(frac{pi}{4};,frac{3pi}{4}bigg)$
Try: First we will sove $$I = int^{-sin^4
theta}_{cos^4 theta}frac{sqrt{f(phi)}dphi}{sqrt{f(theta)}+sqrt{f(cos 2 theta-phi)}}cdots cdots (1)$$
Replace $phi = cos^4 theta-sin^4 theta-phi = cos (2theta)-phi.$
So $$I = int^{-sin^4
theta}_{cos^4 theta}frac{sqrt{f(cos 2 theta -phi)}dphi}{sqrt{f(theta)}+sqrt{f(cos 2 theta-phi)}}cdots (2)$$
So $$2I = int^{-sin^4 theta}_{cos^4 theta}dphi = phibigg|^{-sin^4 theta}_{cos^4 theta}$$
$$I = frac{1}{2}bigg[sin^4 theta +cos ^4 thetabigg] = frac{1}{2}-sin^2 theta cos^2 theta$$
So $$frac{dy}{dx} = sqrt{1-sin^2 theta cos^2 theta}$$
could some help me how to solve further, i don,t get any clue
thanks
answer given as $displaystyle frac{2}{sqrt{3}}tan^{-1}bigg(frac{2tan(x+y)+1}{sqrt{3}}bigg)=x+c.$
differential-equations
Didn’t you loose a negative sign in the equation for I?
– Makina
Nov 17 at 15:52
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Solve the differential equation
$displaystyle frac{dy}{dx} = sqrt{frac{1}{2}+int^{-sin^4
theta}_{cos^4 theta}frac{sqrt{f(phi)}dphi}{sqrt{f(theta)}+sqrt{f(cos 2 theta-phi)}}},$
where $theta = x+y$ and $displaystyle x+yin bigg(frac{pi}{4};,frac{3pi}{4}bigg)$
Try: First we will sove $$I = int^{-sin^4
theta}_{cos^4 theta}frac{sqrt{f(phi)}dphi}{sqrt{f(theta)}+sqrt{f(cos 2 theta-phi)}}cdots cdots (1)$$
Replace $phi = cos^4 theta-sin^4 theta-phi = cos (2theta)-phi.$
So $$I = int^{-sin^4
theta}_{cos^4 theta}frac{sqrt{f(cos 2 theta -phi)}dphi}{sqrt{f(theta)}+sqrt{f(cos 2 theta-phi)}}cdots (2)$$
So $$2I = int^{-sin^4 theta}_{cos^4 theta}dphi = phibigg|^{-sin^4 theta}_{cos^4 theta}$$
$$I = frac{1}{2}bigg[sin^4 theta +cos ^4 thetabigg] = frac{1}{2}-sin^2 theta cos^2 theta$$
So $$frac{dy}{dx} = sqrt{1-sin^2 theta cos^2 theta}$$
could some help me how to solve further, i don,t get any clue
thanks
answer given as $displaystyle frac{2}{sqrt{3}}tan^{-1}bigg(frac{2tan(x+y)+1}{sqrt{3}}bigg)=x+c.$
differential-equations
Solve the differential equation
$displaystyle frac{dy}{dx} = sqrt{frac{1}{2}+int^{-sin^4
theta}_{cos^4 theta}frac{sqrt{f(phi)}dphi}{sqrt{f(theta)}+sqrt{f(cos 2 theta-phi)}}},$
where $theta = x+y$ and $displaystyle x+yin bigg(frac{pi}{4};,frac{3pi}{4}bigg)$
Try: First we will sove $$I = int^{-sin^4
theta}_{cos^4 theta}frac{sqrt{f(phi)}dphi}{sqrt{f(theta)}+sqrt{f(cos 2 theta-phi)}}cdots cdots (1)$$
Replace $phi = cos^4 theta-sin^4 theta-phi = cos (2theta)-phi.$
So $$I = int^{-sin^4
theta}_{cos^4 theta}frac{sqrt{f(cos 2 theta -phi)}dphi}{sqrt{f(theta)}+sqrt{f(cos 2 theta-phi)}}cdots (2)$$
So $$2I = int^{-sin^4 theta}_{cos^4 theta}dphi = phibigg|^{-sin^4 theta}_{cos^4 theta}$$
$$I = frac{1}{2}bigg[sin^4 theta +cos ^4 thetabigg] = frac{1}{2}-sin^2 theta cos^2 theta$$
So $$frac{dy}{dx} = sqrt{1-sin^2 theta cos^2 theta}$$
could some help me how to solve further, i don,t get any clue
thanks
answer given as $displaystyle frac{2}{sqrt{3}}tan^{-1}bigg(frac{2tan(x+y)+1}{sqrt{3}}bigg)=x+c.$
differential-equations
differential-equations
asked Nov 17 at 14:10
Durgesh Tiwari
5,2182629
5,2182629
Didn’t you loose a negative sign in the equation for I?
– Makina
Nov 17 at 15:52
add a comment |
Didn’t you loose a negative sign in the equation for I?
– Makina
Nov 17 at 15:52
Didn’t you loose a negative sign in the equation for I?
– Makina
Nov 17 at 15:52
Didn’t you loose a negative sign in the equation for I?
– Makina
Nov 17 at 15:52
add a comment |
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
I'll assume that you meant to have $f(phi)$ and not $f(theta)$ in the denominator of the integral
You made a sign error
$$ I = frac12 left(-sin^4 theta - cos^4 theta right) = -frac12 +sin^2thetacos^2theta $$
Then
$$ frac{dy}{dx} = sqrt{frac12 + I} = bigvertsinthetacosthetavert $$
You also have
$$ frac{dtheta}{dx} = 1 + frac{dy}{dx} = 1 + bigvertsinthetacosthetabigvert
= begin{cases}
1 + sinthetacostheta, & theta in left(frac{pi}{4}, frac{pi}{2} right) \
1 - sinthetacostheta, & theta in left( frac{pi}{2}, frac{3pi}{4} right)
end{cases} $$
Separating leads to the integral
$$ int frac{1}{1+sinthetacostheta}dtheta = int frac{sec^2theta}{sec^2theta+tantheta}dtheta = intfrac{1}{u^2+u+1}du $$
where $u = tantheta$. Completing the square on the denominator gives
$$ intfrac{1}{u^2+u+1}du = intfrac{1}{left(u+frac12right)^2+frac34}du = frac{2}{sqrt{3}}arctanleft(frac{2u+1}{sqrt{3}}right) + c $$
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
I'll assume that you meant to have $f(phi)$ and not $f(theta)$ in the denominator of the integral
You made a sign error
$$ I = frac12 left(-sin^4 theta - cos^4 theta right) = -frac12 +sin^2thetacos^2theta $$
Then
$$ frac{dy}{dx} = sqrt{frac12 + I} = bigvertsinthetacosthetavert $$
You also have
$$ frac{dtheta}{dx} = 1 + frac{dy}{dx} = 1 + bigvertsinthetacosthetabigvert
= begin{cases}
1 + sinthetacostheta, & theta in left(frac{pi}{4}, frac{pi}{2} right) \
1 - sinthetacostheta, & theta in left( frac{pi}{2}, frac{3pi}{4} right)
end{cases} $$
Separating leads to the integral
$$ int frac{1}{1+sinthetacostheta}dtheta = int frac{sec^2theta}{sec^2theta+tantheta}dtheta = intfrac{1}{u^2+u+1}du $$
where $u = tantheta$. Completing the square on the denominator gives
$$ intfrac{1}{u^2+u+1}du = intfrac{1}{left(u+frac12right)^2+frac34}du = frac{2}{sqrt{3}}arctanleft(frac{2u+1}{sqrt{3}}right) + c $$
add a comment |
up vote
1
down vote
accepted
I'll assume that you meant to have $f(phi)$ and not $f(theta)$ in the denominator of the integral
You made a sign error
$$ I = frac12 left(-sin^4 theta - cos^4 theta right) = -frac12 +sin^2thetacos^2theta $$
Then
$$ frac{dy}{dx} = sqrt{frac12 + I} = bigvertsinthetacosthetavert $$
You also have
$$ frac{dtheta}{dx} = 1 + frac{dy}{dx} = 1 + bigvertsinthetacosthetabigvert
= begin{cases}
1 + sinthetacostheta, & theta in left(frac{pi}{4}, frac{pi}{2} right) \
1 - sinthetacostheta, & theta in left( frac{pi}{2}, frac{3pi}{4} right)
end{cases} $$
Separating leads to the integral
$$ int frac{1}{1+sinthetacostheta}dtheta = int frac{sec^2theta}{sec^2theta+tantheta}dtheta = intfrac{1}{u^2+u+1}du $$
where $u = tantheta$. Completing the square on the denominator gives
$$ intfrac{1}{u^2+u+1}du = intfrac{1}{left(u+frac12right)^2+frac34}du = frac{2}{sqrt{3}}arctanleft(frac{2u+1}{sqrt{3}}right) + c $$
add a comment |
up vote
1
down vote
accepted
up vote
1
down vote
accepted
I'll assume that you meant to have $f(phi)$ and not $f(theta)$ in the denominator of the integral
You made a sign error
$$ I = frac12 left(-sin^4 theta - cos^4 theta right) = -frac12 +sin^2thetacos^2theta $$
Then
$$ frac{dy}{dx} = sqrt{frac12 + I} = bigvertsinthetacosthetavert $$
You also have
$$ frac{dtheta}{dx} = 1 + frac{dy}{dx} = 1 + bigvertsinthetacosthetabigvert
= begin{cases}
1 + sinthetacostheta, & theta in left(frac{pi}{4}, frac{pi}{2} right) \
1 - sinthetacostheta, & theta in left( frac{pi}{2}, frac{3pi}{4} right)
end{cases} $$
Separating leads to the integral
$$ int frac{1}{1+sinthetacostheta}dtheta = int frac{sec^2theta}{sec^2theta+tantheta}dtheta = intfrac{1}{u^2+u+1}du $$
where $u = tantheta$. Completing the square on the denominator gives
$$ intfrac{1}{u^2+u+1}du = intfrac{1}{left(u+frac12right)^2+frac34}du = frac{2}{sqrt{3}}arctanleft(frac{2u+1}{sqrt{3}}right) + c $$
I'll assume that you meant to have $f(phi)$ and not $f(theta)$ in the denominator of the integral
You made a sign error
$$ I = frac12 left(-sin^4 theta - cos^4 theta right) = -frac12 +sin^2thetacos^2theta $$
Then
$$ frac{dy}{dx} = sqrt{frac12 + I} = bigvertsinthetacosthetavert $$
You also have
$$ frac{dtheta}{dx} = 1 + frac{dy}{dx} = 1 + bigvertsinthetacosthetabigvert
= begin{cases}
1 + sinthetacostheta, & theta in left(frac{pi}{4}, frac{pi}{2} right) \
1 - sinthetacostheta, & theta in left( frac{pi}{2}, frac{3pi}{4} right)
end{cases} $$
Separating leads to the integral
$$ int frac{1}{1+sinthetacostheta}dtheta = int frac{sec^2theta}{sec^2theta+tantheta}dtheta = intfrac{1}{u^2+u+1}du $$
where $u = tantheta$. Completing the square on the denominator gives
$$ intfrac{1}{u^2+u+1}du = intfrac{1}{left(u+frac12right)^2+frac34}du = frac{2}{sqrt{3}}arctanleft(frac{2u+1}{sqrt{3}}right) + c $$
edited Nov 21 at 9:29
answered Nov 20 at 16:08
Dylan
11.7k31026
11.7k31026
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3002396%2fsolution-of-complex-differential-equation-involving-2-variables%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Didn’t you loose a negative sign in the equation for I?
– Makina
Nov 17 at 15:52