Would using the Subring test be good here?












1














Let $R$ be a ring and $m$ be a fixed integer.



Let $S$ = {$r in R| mr = 0_R$}.



Prove that $S$ is a subring of $R$.



I'm fairly sure that I can show this using the Subring Test which says that I need to only show that the subset $S$ is closed under subtraction and multiplication, but I I'm not sure how to do that here.



Any help would be greatly appreciated.










share|cite|improve this question






















  • For closure under addition, just notice that $mr + ms = m(r+s)$. Can you do something similar for multiplication?
    – Nick
    Nov 19 at 0:49
















1














Let $R$ be a ring and $m$ be a fixed integer.



Let $S$ = {$r in R| mr = 0_R$}.



Prove that $S$ is a subring of $R$.



I'm fairly sure that I can show this using the Subring Test which says that I need to only show that the subset $S$ is closed under subtraction and multiplication, but I I'm not sure how to do that here.



Any help would be greatly appreciated.










share|cite|improve this question






















  • For closure under addition, just notice that $mr + ms = m(r+s)$. Can you do something similar for multiplication?
    – Nick
    Nov 19 at 0:49














1












1








1







Let $R$ be a ring and $m$ be a fixed integer.



Let $S$ = {$r in R| mr = 0_R$}.



Prove that $S$ is a subring of $R$.



I'm fairly sure that I can show this using the Subring Test which says that I need to only show that the subset $S$ is closed under subtraction and multiplication, but I I'm not sure how to do that here.



Any help would be greatly appreciated.










share|cite|improve this question













Let $R$ be a ring and $m$ be a fixed integer.



Let $S$ = {$r in R| mr = 0_R$}.



Prove that $S$ is a subring of $R$.



I'm fairly sure that I can show this using the Subring Test which says that I need to only show that the subset $S$ is closed under subtraction and multiplication, but I I'm not sure how to do that here.



Any help would be greatly appreciated.







abstract-algebra ring-theory






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Nov 19 at 0:47









Raul Quintanilla Jr.

702




702












  • For closure under addition, just notice that $mr + ms = m(r+s)$. Can you do something similar for multiplication?
    – Nick
    Nov 19 at 0:49


















  • For closure under addition, just notice that $mr + ms = m(r+s)$. Can you do something similar for multiplication?
    – Nick
    Nov 19 at 0:49
















For closure under addition, just notice that $mr + ms = m(r+s)$. Can you do something similar for multiplication?
– Nick
Nov 19 at 0:49




For closure under addition, just notice that $mr + ms = m(r+s)$. Can you do something similar for multiplication?
– Nick
Nov 19 at 0:49










1 Answer
1






active

oldest

votes


















0














You are indeed correct that the subring test applies here. For closure under subtraction, let $r,s in S$; we need to show $m(r-s)=0_R$. Now, $m(r-s)=mr-ms=0_R-0_R=0_R$ by the distributive property and the fact that $mr=0_R$ and $ms=0_R$ (since $r$ and $s$ are in $S$.) For closure under multiplication, we need to show $m(rs)=0_R$. For this note that $m(rs)=(mr)s=0_Rs=0_R$ (if you can't see why rearranging the brackets in the last step is justified, remember that $m$ is an integer, so in effect we are adding $rs$ to itself $m$ times, or $-m$ times, if $m<0$. So if we factor out an $s$ from the sum... you should be able to fill in the details!)






share|cite|improve this answer





















    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004354%2fwould-using-the-subring-test-be-good-here%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0














    You are indeed correct that the subring test applies here. For closure under subtraction, let $r,s in S$; we need to show $m(r-s)=0_R$. Now, $m(r-s)=mr-ms=0_R-0_R=0_R$ by the distributive property and the fact that $mr=0_R$ and $ms=0_R$ (since $r$ and $s$ are in $S$.) For closure under multiplication, we need to show $m(rs)=0_R$. For this note that $m(rs)=(mr)s=0_Rs=0_R$ (if you can't see why rearranging the brackets in the last step is justified, remember that $m$ is an integer, so in effect we are adding $rs$ to itself $m$ times, or $-m$ times, if $m<0$. So if we factor out an $s$ from the sum... you should be able to fill in the details!)






    share|cite|improve this answer


























      0














      You are indeed correct that the subring test applies here. For closure under subtraction, let $r,s in S$; we need to show $m(r-s)=0_R$. Now, $m(r-s)=mr-ms=0_R-0_R=0_R$ by the distributive property and the fact that $mr=0_R$ and $ms=0_R$ (since $r$ and $s$ are in $S$.) For closure under multiplication, we need to show $m(rs)=0_R$. For this note that $m(rs)=(mr)s=0_Rs=0_R$ (if you can't see why rearranging the brackets in the last step is justified, remember that $m$ is an integer, so in effect we are adding $rs$ to itself $m$ times, or $-m$ times, if $m<0$. So if we factor out an $s$ from the sum... you should be able to fill in the details!)






      share|cite|improve this answer
























        0












        0








        0






        You are indeed correct that the subring test applies here. For closure under subtraction, let $r,s in S$; we need to show $m(r-s)=0_R$. Now, $m(r-s)=mr-ms=0_R-0_R=0_R$ by the distributive property and the fact that $mr=0_R$ and $ms=0_R$ (since $r$ and $s$ are in $S$.) For closure under multiplication, we need to show $m(rs)=0_R$. For this note that $m(rs)=(mr)s=0_Rs=0_R$ (if you can't see why rearranging the brackets in the last step is justified, remember that $m$ is an integer, so in effect we are adding $rs$ to itself $m$ times, or $-m$ times, if $m<0$. So if we factor out an $s$ from the sum... you should be able to fill in the details!)






        share|cite|improve this answer












        You are indeed correct that the subring test applies here. For closure under subtraction, let $r,s in S$; we need to show $m(r-s)=0_R$. Now, $m(r-s)=mr-ms=0_R-0_R=0_R$ by the distributive property and the fact that $mr=0_R$ and $ms=0_R$ (since $r$ and $s$ are in $S$.) For closure under multiplication, we need to show $m(rs)=0_R$. For this note that $m(rs)=(mr)s=0_Rs=0_R$ (if you can't see why rearranging the brackets in the last step is justified, remember that $m$ is an integer, so in effect we are adding $rs$ to itself $m$ times, or $-m$ times, if $m<0$. So if we factor out an $s$ from the sum... you should be able to fill in the details!)







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Nov 19 at 3:30









        Alex Sanger

        865




        865






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004354%2fwould-using-the-subring-test-be-good-here%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            AnyDesk - Fatal Program Failure

            How to calibrate 16:9 built-in touch-screen to a 4:3 resolution?

            QoS: MAC-Priority for clients behind a repeater