Find the largest interval where the Initial Value Problem $y'(t)=t+sin(y(t))$ with $y(2)=1$ has a unique...
Consider the initial value problem (IVP)
begin{cases}
y'(t)= t + sin(y(t)), \
y(2) = 1. \
end{cases}
Find the largest interval $mathcal{I}subset mathbb{R}$ containing $t_0=2$ so that the problem has a unique solution $y$ in $mathcal{I}$.
My proof attempt:
Let $L>frac{pi}{2}>0$. Define
$$ R := {(t,y)in mathbb{R}^2:|t-2|leq L, |y-1|leq L } $$
Then
$$ 2-Lleq t leq 2+L text{ and } 1-Lleq y leq 1+L $$
Since $L>frac{pi}{2} Rightarrow exists y_0in (1-L, 1+L)$ so that $sin(y_0)=1$. Hence,
$$ M = underset{R}{sup}|F(t,y)|=3+L $$
Then
$$ |partial_y F(t,y)|=|cos(y)|leq 1 $$
Put $c = 1$, then by the Mean Value theorem, for $(t,y),(t,u)in R Rightarrow$
$$ |F(t,y)-F(t,u)|leq c|y-u| $$
Let $a_{*}=min left(L, frac{L}{M}right)=min left(L, frac{L}{3+L}right)=frac{L}{3+L}$. Using Picard-Lindelof's theorem, there should exist a unique solution on the interval $mathcal{I}=left[2-frac{L}{3+L}, 2+frac{L}{3+L}right]$.
Since $underset{Lrightarrow infty}{lim}frac{L}{3+L}=1$, our largest interval should be $mathcal{I}=left[1+varepsilon,3-varepsilonright]$ where $varepsilon in (0,1)$.
Am I on the right track here?
real-analysis differential-equations proof-verification initial-value-problems
add a comment |
Consider the initial value problem (IVP)
begin{cases}
y'(t)= t + sin(y(t)), \
y(2) = 1. \
end{cases}
Find the largest interval $mathcal{I}subset mathbb{R}$ containing $t_0=2$ so that the problem has a unique solution $y$ in $mathcal{I}$.
My proof attempt:
Let $L>frac{pi}{2}>0$. Define
$$ R := {(t,y)in mathbb{R}^2:|t-2|leq L, |y-1|leq L } $$
Then
$$ 2-Lleq t leq 2+L text{ and } 1-Lleq y leq 1+L $$
Since $L>frac{pi}{2} Rightarrow exists y_0in (1-L, 1+L)$ so that $sin(y_0)=1$. Hence,
$$ M = underset{R}{sup}|F(t,y)|=3+L $$
Then
$$ |partial_y F(t,y)|=|cos(y)|leq 1 $$
Put $c = 1$, then by the Mean Value theorem, for $(t,y),(t,u)in R Rightarrow$
$$ |F(t,y)-F(t,u)|leq c|y-u| $$
Let $a_{*}=min left(L, frac{L}{M}right)=min left(L, frac{L}{3+L}right)=frac{L}{3+L}$. Using Picard-Lindelof's theorem, there should exist a unique solution on the interval $mathcal{I}=left[2-frac{L}{3+L}, 2+frac{L}{3+L}right]$.
Since $underset{Lrightarrow infty}{lim}frac{L}{3+L}=1$, our largest interval should be $mathcal{I}=left[1+varepsilon,3-varepsilonright]$ where $varepsilon in (0,1)$.
Am I on the right track here?
real-analysis differential-equations proof-verification initial-value-problems
1
I have also read somewhere that there is a global solution (i.e. $mathcal{I}=mathbb{R}$) if F(t,y) is globally lipschitz. Which I believe it is since $nabla F=(1, cos(y))$. Which should be bounded under the operator norm. So how do I reconcile this fact with what I did up above? Is what I did wrong?
– Joe Man Analysis
Nov 19 '18 at 4:49
add a comment |
Consider the initial value problem (IVP)
begin{cases}
y'(t)= t + sin(y(t)), \
y(2) = 1. \
end{cases}
Find the largest interval $mathcal{I}subset mathbb{R}$ containing $t_0=2$ so that the problem has a unique solution $y$ in $mathcal{I}$.
My proof attempt:
Let $L>frac{pi}{2}>0$. Define
$$ R := {(t,y)in mathbb{R}^2:|t-2|leq L, |y-1|leq L } $$
Then
$$ 2-Lleq t leq 2+L text{ and } 1-Lleq y leq 1+L $$
Since $L>frac{pi}{2} Rightarrow exists y_0in (1-L, 1+L)$ so that $sin(y_0)=1$. Hence,
$$ M = underset{R}{sup}|F(t,y)|=3+L $$
Then
$$ |partial_y F(t,y)|=|cos(y)|leq 1 $$
Put $c = 1$, then by the Mean Value theorem, for $(t,y),(t,u)in R Rightarrow$
$$ |F(t,y)-F(t,u)|leq c|y-u| $$
Let $a_{*}=min left(L, frac{L}{M}right)=min left(L, frac{L}{3+L}right)=frac{L}{3+L}$. Using Picard-Lindelof's theorem, there should exist a unique solution on the interval $mathcal{I}=left[2-frac{L}{3+L}, 2+frac{L}{3+L}right]$.
Since $underset{Lrightarrow infty}{lim}frac{L}{3+L}=1$, our largest interval should be $mathcal{I}=left[1+varepsilon,3-varepsilonright]$ where $varepsilon in (0,1)$.
Am I on the right track here?
real-analysis differential-equations proof-verification initial-value-problems
Consider the initial value problem (IVP)
begin{cases}
y'(t)= t + sin(y(t)), \
y(2) = 1. \
end{cases}
Find the largest interval $mathcal{I}subset mathbb{R}$ containing $t_0=2$ so that the problem has a unique solution $y$ in $mathcal{I}$.
My proof attempt:
Let $L>frac{pi}{2}>0$. Define
$$ R := {(t,y)in mathbb{R}^2:|t-2|leq L, |y-1|leq L } $$
Then
$$ 2-Lleq t leq 2+L text{ and } 1-Lleq y leq 1+L $$
Since $L>frac{pi}{2} Rightarrow exists y_0in (1-L, 1+L)$ so that $sin(y_0)=1$. Hence,
$$ M = underset{R}{sup}|F(t,y)|=3+L $$
Then
$$ |partial_y F(t,y)|=|cos(y)|leq 1 $$
Put $c = 1$, then by the Mean Value theorem, for $(t,y),(t,u)in R Rightarrow$
$$ |F(t,y)-F(t,u)|leq c|y-u| $$
Let $a_{*}=min left(L, frac{L}{M}right)=min left(L, frac{L}{3+L}right)=frac{L}{3+L}$. Using Picard-Lindelof's theorem, there should exist a unique solution on the interval $mathcal{I}=left[2-frac{L}{3+L}, 2+frac{L}{3+L}right]$.
Since $underset{Lrightarrow infty}{lim}frac{L}{3+L}=1$, our largest interval should be $mathcal{I}=left[1+varepsilon,3-varepsilonright]$ where $varepsilon in (0,1)$.
Am I on the right track here?
real-analysis differential-equations proof-verification initial-value-problems
real-analysis differential-equations proof-verification initial-value-problems
edited Nov 19 '18 at 10:52
asked Nov 19 '18 at 4:47
Joe Man Analysis
33419
33419
1
I have also read somewhere that there is a global solution (i.e. $mathcal{I}=mathbb{R}$) if F(t,y) is globally lipschitz. Which I believe it is since $nabla F=(1, cos(y))$. Which should be bounded under the operator norm. So how do I reconcile this fact with what I did up above? Is what I did wrong?
– Joe Man Analysis
Nov 19 '18 at 4:49
add a comment |
1
I have also read somewhere that there is a global solution (i.e. $mathcal{I}=mathbb{R}$) if F(t,y) is globally lipschitz. Which I believe it is since $nabla F=(1, cos(y))$. Which should be bounded under the operator norm. So how do I reconcile this fact with what I did up above? Is what I did wrong?
– Joe Man Analysis
Nov 19 '18 at 4:49
1
1
I have also read somewhere that there is a global solution (i.e. $mathcal{I}=mathbb{R}$) if F(t,y) is globally lipschitz. Which I believe it is since $nabla F=(1, cos(y))$. Which should be bounded under the operator norm. So how do I reconcile this fact with what I did up above? Is what I did wrong?
– Joe Man Analysis
Nov 19 '18 at 4:49
I have also read somewhere that there is a global solution (i.e. $mathcal{I}=mathbb{R}$) if F(t,y) is globally lipschitz. Which I believe it is since $nabla F=(1, cos(y))$. Which should be bounded under the operator norm. So how do I reconcile this fact with what I did up above? Is what I did wrong?
– Joe Man Analysis
Nov 19 '18 at 4:49
add a comment |
1 Answer
1
active
oldest
votes
From the Picard theorem one can infer the following: Given an ODE $y'=f(t,y)$ with $f$ defined in an open set $Omegasubset{mathbb R}^2$ and fulfilling the assumptions of the theorem in the neighborhood of each point $(t,y)inOmega$, any solution of an IVP $y(t_0)=y_0$ can be extended to a maximal solution $$tilde y:quad Jmapsto{mathbb R},quad xmapsto tilde y(x)$$
in an unique way. Here $J$ is an open interval which may depend on the given initial point $(t_0,y_0)$. Furthermore the graph ${cal G}(tilde y)subsetOmega$ of this maximal solution will "ultimately" leave any compact set $KsubsetOmega$ given in advance. (For example, the solution cannot develop a $xmapstosin{1over x}$ singularity in the interior of $Omega$.)
In the case at hand we have $f(t,y)=t+sin y$ and $Omega={mathbb R}^2$. It follows that for any solution $tmapsto y(t)$ one has $|y'(t)|leq |t|+1$. This allows to conclude that $|tilde y(t)|leq C(1+t^2)$ for a suitable $C>0$; hence $tilde y$ cannot drift away to $pm infty$ in finite time. Since ${cal G}(tilde y)$ will ultimately leave any compact rectangle $K:[-M,M]times[-C(2+M^2),C(2+M^2]$, and cannot do so across the bottom and top edges, it follows that $tilde y$ is defined on all of ${mathbb R}$.
1
Could you please explain how the bound on the maximal solution was obtained?
– Joe Man Analysis
Nov 19 '18 at 10:49
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004533%2ffind-the-largest-interval-where-the-initial-value-problem-yt-tsinyt-wi%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
From the Picard theorem one can infer the following: Given an ODE $y'=f(t,y)$ with $f$ defined in an open set $Omegasubset{mathbb R}^2$ and fulfilling the assumptions of the theorem in the neighborhood of each point $(t,y)inOmega$, any solution of an IVP $y(t_0)=y_0$ can be extended to a maximal solution $$tilde y:quad Jmapsto{mathbb R},quad xmapsto tilde y(x)$$
in an unique way. Here $J$ is an open interval which may depend on the given initial point $(t_0,y_0)$. Furthermore the graph ${cal G}(tilde y)subsetOmega$ of this maximal solution will "ultimately" leave any compact set $KsubsetOmega$ given in advance. (For example, the solution cannot develop a $xmapstosin{1over x}$ singularity in the interior of $Omega$.)
In the case at hand we have $f(t,y)=t+sin y$ and $Omega={mathbb R}^2$. It follows that for any solution $tmapsto y(t)$ one has $|y'(t)|leq |t|+1$. This allows to conclude that $|tilde y(t)|leq C(1+t^2)$ for a suitable $C>0$; hence $tilde y$ cannot drift away to $pm infty$ in finite time. Since ${cal G}(tilde y)$ will ultimately leave any compact rectangle $K:[-M,M]times[-C(2+M^2),C(2+M^2]$, and cannot do so across the bottom and top edges, it follows that $tilde y$ is defined on all of ${mathbb R}$.
1
Could you please explain how the bound on the maximal solution was obtained?
– Joe Man Analysis
Nov 19 '18 at 10:49
add a comment |
From the Picard theorem one can infer the following: Given an ODE $y'=f(t,y)$ with $f$ defined in an open set $Omegasubset{mathbb R}^2$ and fulfilling the assumptions of the theorem in the neighborhood of each point $(t,y)inOmega$, any solution of an IVP $y(t_0)=y_0$ can be extended to a maximal solution $$tilde y:quad Jmapsto{mathbb R},quad xmapsto tilde y(x)$$
in an unique way. Here $J$ is an open interval which may depend on the given initial point $(t_0,y_0)$. Furthermore the graph ${cal G}(tilde y)subsetOmega$ of this maximal solution will "ultimately" leave any compact set $KsubsetOmega$ given in advance. (For example, the solution cannot develop a $xmapstosin{1over x}$ singularity in the interior of $Omega$.)
In the case at hand we have $f(t,y)=t+sin y$ and $Omega={mathbb R}^2$. It follows that for any solution $tmapsto y(t)$ one has $|y'(t)|leq |t|+1$. This allows to conclude that $|tilde y(t)|leq C(1+t^2)$ for a suitable $C>0$; hence $tilde y$ cannot drift away to $pm infty$ in finite time. Since ${cal G}(tilde y)$ will ultimately leave any compact rectangle $K:[-M,M]times[-C(2+M^2),C(2+M^2]$, and cannot do so across the bottom and top edges, it follows that $tilde y$ is defined on all of ${mathbb R}$.
1
Could you please explain how the bound on the maximal solution was obtained?
– Joe Man Analysis
Nov 19 '18 at 10:49
add a comment |
From the Picard theorem one can infer the following: Given an ODE $y'=f(t,y)$ with $f$ defined in an open set $Omegasubset{mathbb R}^2$ and fulfilling the assumptions of the theorem in the neighborhood of each point $(t,y)inOmega$, any solution of an IVP $y(t_0)=y_0$ can be extended to a maximal solution $$tilde y:quad Jmapsto{mathbb R},quad xmapsto tilde y(x)$$
in an unique way. Here $J$ is an open interval which may depend on the given initial point $(t_0,y_0)$. Furthermore the graph ${cal G}(tilde y)subsetOmega$ of this maximal solution will "ultimately" leave any compact set $KsubsetOmega$ given in advance. (For example, the solution cannot develop a $xmapstosin{1over x}$ singularity in the interior of $Omega$.)
In the case at hand we have $f(t,y)=t+sin y$ and $Omega={mathbb R}^2$. It follows that for any solution $tmapsto y(t)$ one has $|y'(t)|leq |t|+1$. This allows to conclude that $|tilde y(t)|leq C(1+t^2)$ for a suitable $C>0$; hence $tilde y$ cannot drift away to $pm infty$ in finite time. Since ${cal G}(tilde y)$ will ultimately leave any compact rectangle $K:[-M,M]times[-C(2+M^2),C(2+M^2]$, and cannot do so across the bottom and top edges, it follows that $tilde y$ is defined on all of ${mathbb R}$.
From the Picard theorem one can infer the following: Given an ODE $y'=f(t,y)$ with $f$ defined in an open set $Omegasubset{mathbb R}^2$ and fulfilling the assumptions of the theorem in the neighborhood of each point $(t,y)inOmega$, any solution of an IVP $y(t_0)=y_0$ can be extended to a maximal solution $$tilde y:quad Jmapsto{mathbb R},quad xmapsto tilde y(x)$$
in an unique way. Here $J$ is an open interval which may depend on the given initial point $(t_0,y_0)$. Furthermore the graph ${cal G}(tilde y)subsetOmega$ of this maximal solution will "ultimately" leave any compact set $KsubsetOmega$ given in advance. (For example, the solution cannot develop a $xmapstosin{1over x}$ singularity in the interior of $Omega$.)
In the case at hand we have $f(t,y)=t+sin y$ and $Omega={mathbb R}^2$. It follows that for any solution $tmapsto y(t)$ one has $|y'(t)|leq |t|+1$. This allows to conclude that $|tilde y(t)|leq C(1+t^2)$ for a suitable $C>0$; hence $tilde y$ cannot drift away to $pm infty$ in finite time. Since ${cal G}(tilde y)$ will ultimately leave any compact rectangle $K:[-M,M]times[-C(2+M^2),C(2+M^2]$, and cannot do so across the bottom and top edges, it follows that $tilde y$ is defined on all of ${mathbb R}$.
edited Nov 19 '18 at 10:56
answered Nov 19 '18 at 10:07
Christian Blatter
172k7112326
172k7112326
1
Could you please explain how the bound on the maximal solution was obtained?
– Joe Man Analysis
Nov 19 '18 at 10:49
add a comment |
1
Could you please explain how the bound on the maximal solution was obtained?
– Joe Man Analysis
Nov 19 '18 at 10:49
1
1
Could you please explain how the bound on the maximal solution was obtained?
– Joe Man Analysis
Nov 19 '18 at 10:49
Could you please explain how the bound on the maximal solution was obtained?
– Joe Man Analysis
Nov 19 '18 at 10:49
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004533%2ffind-the-largest-interval-where-the-initial-value-problem-yt-tsinyt-wi%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
I have also read somewhere that there is a global solution (i.e. $mathcal{I}=mathbb{R}$) if F(t,y) is globally lipschitz. Which I believe it is since $nabla F=(1, cos(y))$. Which should be bounded under the operator norm. So how do I reconcile this fact with what I did up above? Is what I did wrong?
– Joe Man Analysis
Nov 19 '18 at 4:49