mean and covariance of a random process
I'm looking at an example from a book I'm reading,
How does it formulate the mean?
I am thinking $$E[X[n]] = sumlimits^infty_{-infty} X[n]P[X[n]] =\
sumlimits^infty_{n=-infty} X[n = even] frac{1}{2} + X[n = even] frac{1}{2} + X[n = odd] frac{9}{10} + X[n = odd] frac{1}{10} \
= sumlimits^infty_{-infty} frac{1}{2}-frac{1}{2}+frac{1}{3}frac{9}{10}-3frac{1}{10} = 0$$
Does this formulation look right? I'm confused when X[n] can be probabilistically assigned values.
random-variables random-walk
|
show 2 more comments
I'm looking at an example from a book I'm reading,
How does it formulate the mean?
I am thinking $$E[X[n]] = sumlimits^infty_{-infty} X[n]P[X[n]] =\
sumlimits^infty_{n=-infty} X[n = even] frac{1}{2} + X[n = even] frac{1}{2} + X[n = odd] frac{9}{10} + X[n = odd] frac{1}{10} \
= sumlimits^infty_{-infty} frac{1}{2}-frac{1}{2}+frac{1}{3}frac{9}{10}-3frac{1}{10} = 0$$
Does this formulation look right? I'm confused when X[n] can be probabilistically assigned values.
random-variables random-walk
What does $X[n]$ mean? Did you mean $X_n$?
– Will M.
Nov 19 '18 at 6:08
@WillM. Yes, I think that makes it easier to write.
– drerD
Nov 19 '18 at 6:10
1
The formulae you wrote does not make sense to me. $mathbf{E}(X_n)$ is clearly zero for $n$ even and it is $dfrac{1}{3} times dfrac{9}{10} - 3 times dfrac{1}{10} = 0$ for $n$ odd.
– Will M.
Nov 19 '18 at 6:13
It seems like you are thinking of $X$ as the random variable. That is not correct, $X_n$ is a random variable, $X$ is a "random sequence."
– Will M.
Nov 19 '18 at 6:14
1
Ok, stop using $X[k]$ because that IS confusing. For a random sequence $X$ we can define a function $m_X$ such that $m_X(n) = mathbf{E}(X_n).$
– Will M.
Nov 19 '18 at 6:24
|
show 2 more comments
I'm looking at an example from a book I'm reading,
How does it formulate the mean?
I am thinking $$E[X[n]] = sumlimits^infty_{-infty} X[n]P[X[n]] =\
sumlimits^infty_{n=-infty} X[n = even] frac{1}{2} + X[n = even] frac{1}{2} + X[n = odd] frac{9}{10} + X[n = odd] frac{1}{10} \
= sumlimits^infty_{-infty} frac{1}{2}-frac{1}{2}+frac{1}{3}frac{9}{10}-3frac{1}{10} = 0$$
Does this formulation look right? I'm confused when X[n] can be probabilistically assigned values.
random-variables random-walk
I'm looking at an example from a book I'm reading,
How does it formulate the mean?
I am thinking $$E[X[n]] = sumlimits^infty_{-infty} X[n]P[X[n]] =\
sumlimits^infty_{n=-infty} X[n = even] frac{1}{2} + X[n = even] frac{1}{2} + X[n = odd] frac{9}{10} + X[n = odd] frac{1}{10} \
= sumlimits^infty_{-infty} frac{1}{2}-frac{1}{2}+frac{1}{3}frac{9}{10}-3frac{1}{10} = 0$$
Does this formulation look right? I'm confused when X[n] can be probabilistically assigned values.
random-variables random-walk
random-variables random-walk
asked Nov 19 '18 at 6:01
drerD
1519
1519
What does $X[n]$ mean? Did you mean $X_n$?
– Will M.
Nov 19 '18 at 6:08
@WillM. Yes, I think that makes it easier to write.
– drerD
Nov 19 '18 at 6:10
1
The formulae you wrote does not make sense to me. $mathbf{E}(X_n)$ is clearly zero for $n$ even and it is $dfrac{1}{3} times dfrac{9}{10} - 3 times dfrac{1}{10} = 0$ for $n$ odd.
– Will M.
Nov 19 '18 at 6:13
It seems like you are thinking of $X$ as the random variable. That is not correct, $X_n$ is a random variable, $X$ is a "random sequence."
– Will M.
Nov 19 '18 at 6:14
1
Ok, stop using $X[k]$ because that IS confusing. For a random sequence $X$ we can define a function $m_X$ such that $m_X(n) = mathbf{E}(X_n).$
– Will M.
Nov 19 '18 at 6:24
|
show 2 more comments
What does $X[n]$ mean? Did you mean $X_n$?
– Will M.
Nov 19 '18 at 6:08
@WillM. Yes, I think that makes it easier to write.
– drerD
Nov 19 '18 at 6:10
1
The formulae you wrote does not make sense to me. $mathbf{E}(X_n)$ is clearly zero for $n$ even and it is $dfrac{1}{3} times dfrac{9}{10} - 3 times dfrac{1}{10} = 0$ for $n$ odd.
– Will M.
Nov 19 '18 at 6:13
It seems like you are thinking of $X$ as the random variable. That is not correct, $X_n$ is a random variable, $X$ is a "random sequence."
– Will M.
Nov 19 '18 at 6:14
1
Ok, stop using $X[k]$ because that IS confusing. For a random sequence $X$ we can define a function $m_X$ such that $m_X(n) = mathbf{E}(X_n).$
– Will M.
Nov 19 '18 at 6:24
What does $X[n]$ mean? Did you mean $X_n$?
– Will M.
Nov 19 '18 at 6:08
What does $X[n]$ mean? Did you mean $X_n$?
– Will M.
Nov 19 '18 at 6:08
@WillM. Yes, I think that makes it easier to write.
– drerD
Nov 19 '18 at 6:10
@WillM. Yes, I think that makes it easier to write.
– drerD
Nov 19 '18 at 6:10
1
1
The formulae you wrote does not make sense to me. $mathbf{E}(X_n)$ is clearly zero for $n$ even and it is $dfrac{1}{3} times dfrac{9}{10} - 3 times dfrac{1}{10} = 0$ for $n$ odd.
– Will M.
Nov 19 '18 at 6:13
The formulae you wrote does not make sense to me. $mathbf{E}(X_n)$ is clearly zero for $n$ even and it is $dfrac{1}{3} times dfrac{9}{10} - 3 times dfrac{1}{10} = 0$ for $n$ odd.
– Will M.
Nov 19 '18 at 6:13
It seems like you are thinking of $X$ as the random variable. That is not correct, $X_n$ is a random variable, $X$ is a "random sequence."
– Will M.
Nov 19 '18 at 6:14
It seems like you are thinking of $X$ as the random variable. That is not correct, $X_n$ is a random variable, $X$ is a "random sequence."
– Will M.
Nov 19 '18 at 6:14
1
1
Ok, stop using $X[k]$ because that IS confusing. For a random sequence $X$ we can define a function $m_X$ such that $m_X(n) = mathbf{E}(X_n).$
– Will M.
Nov 19 '18 at 6:24
Ok, stop using $X[k]$ because that IS confusing. For a random sequence $X$ we can define a function $m_X$ such that $m_X(n) = mathbf{E}(X_n).$
– Will M.
Nov 19 '18 at 6:24
|
show 2 more comments
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004578%2fmean-and-covariance-of-a-random-process%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004578%2fmean-and-covariance-of-a-random-process%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
What does $X[n]$ mean? Did you mean $X_n$?
– Will M.
Nov 19 '18 at 6:08
@WillM. Yes, I think that makes it easier to write.
– drerD
Nov 19 '18 at 6:10
1
The formulae you wrote does not make sense to me. $mathbf{E}(X_n)$ is clearly zero for $n$ even and it is $dfrac{1}{3} times dfrac{9}{10} - 3 times dfrac{1}{10} = 0$ for $n$ odd.
– Will M.
Nov 19 '18 at 6:13
It seems like you are thinking of $X$ as the random variable. That is not correct, $X_n$ is a random variable, $X$ is a "random sequence."
– Will M.
Nov 19 '18 at 6:14
1
Ok, stop using $X[k]$ because that IS confusing. For a random sequence $X$ we can define a function $m_X$ such that $m_X(n) = mathbf{E}(X_n).$
– Will M.
Nov 19 '18 at 6:24