N(x|μ1,σ1^2)N(x|μ1,σ2^2) ∝ N(x|μ1+μ2,σ1^2+σ2^2)











up vote
0
down vote

favorite












N is d-th dimensional Gaussian distribution. In case of d=1



$ N(x|mu,sigma^2)=frac{1}{sqrt{2pisigma^2}}e^{-frac{(x-mu)^2}{2sigma^2}} $



in case of $d neq 1$,



$N({bf x}|{boldsymbol mu},{bf Sigma})=frac{1}{sqrt{(2pi)^d|{bf Sigma}|}}{rm exp}{-frac{1}{2}(bf{x}-boldsymbol mu)^TSigma^{-1}(x-boldsymbol mu)}$



Here,$bf{x}$ and $boldsymbol mu$ are d dimensional vertical vectors and $bf Sigma$ is d dimensional square matrix.



We can proof $N(x|mu_1,sigma_1)N(x|mu,sigma_2)propto N(x|mu_1+mu_2,sigma_1^2+sigma_2^2)$ easily.



How about in case of production of multi dimensional and single dimensional Gaussian distribution??



I mean, what is $N(x|mu,sigma^2)N({bf W}|{bf m},bfSigma^2) $ proportional to? I want to know what kind of probability distribution will be appeared.










share|cite|improve this question


























    up vote
    0
    down vote

    favorite












    N is d-th dimensional Gaussian distribution. In case of d=1



    $ N(x|mu,sigma^2)=frac{1}{sqrt{2pisigma^2}}e^{-frac{(x-mu)^2}{2sigma^2}} $



    in case of $d neq 1$,



    $N({bf x}|{boldsymbol mu},{bf Sigma})=frac{1}{sqrt{(2pi)^d|{bf Sigma}|}}{rm exp}{-frac{1}{2}(bf{x}-boldsymbol mu)^TSigma^{-1}(x-boldsymbol mu)}$



    Here,$bf{x}$ and $boldsymbol mu$ are d dimensional vertical vectors and $bf Sigma$ is d dimensional square matrix.



    We can proof $N(x|mu_1,sigma_1)N(x|mu,sigma_2)propto N(x|mu_1+mu_2,sigma_1^2+sigma_2^2)$ easily.



    How about in case of production of multi dimensional and single dimensional Gaussian distribution??



    I mean, what is $N(x|mu,sigma^2)N({bf W}|{bf m},bfSigma^2) $ proportional to? I want to know what kind of probability distribution will be appeared.










    share|cite|improve this question
























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      N is d-th dimensional Gaussian distribution. In case of d=1



      $ N(x|mu,sigma^2)=frac{1}{sqrt{2pisigma^2}}e^{-frac{(x-mu)^2}{2sigma^2}} $



      in case of $d neq 1$,



      $N({bf x}|{boldsymbol mu},{bf Sigma})=frac{1}{sqrt{(2pi)^d|{bf Sigma}|}}{rm exp}{-frac{1}{2}(bf{x}-boldsymbol mu)^TSigma^{-1}(x-boldsymbol mu)}$



      Here,$bf{x}$ and $boldsymbol mu$ are d dimensional vertical vectors and $bf Sigma$ is d dimensional square matrix.



      We can proof $N(x|mu_1,sigma_1)N(x|mu,sigma_2)propto N(x|mu_1+mu_2,sigma_1^2+sigma_2^2)$ easily.



      How about in case of production of multi dimensional and single dimensional Gaussian distribution??



      I mean, what is $N(x|mu,sigma^2)N({bf W}|{bf m},bfSigma^2) $ proportional to? I want to know what kind of probability distribution will be appeared.










      share|cite|improve this question













      N is d-th dimensional Gaussian distribution. In case of d=1



      $ N(x|mu,sigma^2)=frac{1}{sqrt{2pisigma^2}}e^{-frac{(x-mu)^2}{2sigma^2}} $



      in case of $d neq 1$,



      $N({bf x}|{boldsymbol mu},{bf Sigma})=frac{1}{sqrt{(2pi)^d|{bf Sigma}|}}{rm exp}{-frac{1}{2}(bf{x}-boldsymbol mu)^TSigma^{-1}(x-boldsymbol mu)}$



      Here,$bf{x}$ and $boldsymbol mu$ are d dimensional vertical vectors and $bf Sigma$ is d dimensional square matrix.



      We can proof $N(x|mu_1,sigma_1)N(x|mu,sigma_2)propto N(x|mu_1+mu_2,sigma_1^2+sigma_2^2)$ easily.



      How about in case of production of multi dimensional and single dimensional Gaussian distribution??



      I mean, what is $N(x|mu,sigma^2)N({bf W}|{bf m},bfSigma^2) $ proportional to? I want to know what kind of probability distribution will be appeared.







      probability statistics






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 15 at 4:54









      Sakurai.JJ

      687




      687



























          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999233%2fnx%25ce%25bc1-%25cf%258312nx%25ce%25bc1-%25cf%258322-%25e2%2588%259d-nx%25ce%25bc1%25ce%25bc2-%25cf%258312%25cf%258322%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















           

          draft saved


          draft discarded



















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999233%2fnx%25ce%25bc1-%25cf%258312nx%25ce%25bc1-%25cf%258322-%25e2%2588%259d-nx%25ce%25bc1%25ce%25bc2-%25cf%258312%25cf%258322%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Актюбинская область

          QoS: MAC-Priority for clients behind a repeater

          AnyDesk - Fatal Program Failure