bounded gambling systems (Theorem 4.2.8 in Durrett: Probability Theory and Examples)
Theorem 4.2.8 in Durrett: Probability Theory and Examples states
Let $X_n, n geq 0$ be a supermartingale. If $H_n geq 0$, is predictable and each $H_n$ is bounded then $(H cdot X)_n := sum_{m=1}^{n}H_m(X_m-X_{m-1})$ is a supermartingale.
While I know an example showing that this statement does not hold when $H_n$ is not bounded, I cannot see where we use boundedness in the proof. The proof is based on this equation:
$$mathbb{E}[(Hcdot X)_{n+1} | mathcal{F}_n ] = (Hcdot X)_{n} + mathbb{E}[H_{n+1}(X_{n+1}-X_{n}) | mathcal{F}_n ] = (Hcdot X)_{n} + H_{n+1}mathbb{E}[(X_{n+1}-X_{n}) | mathcal{F}_n ] leq (Hcdot X)_{n}
$$
since $H_{n+1} geq 0$ and $mathbb{E}[(X_{n+1}-X_{n}) | mathcal{F}_n ] leq 0$.
Now the properties of conditional expectation we use in this equation (linearity and that we can factor $H_{n+1}$ out because it is $mathcal{F}_n$ measurable) do require $(Hcdot X)_{n+1}$ and $H_{n+1}$ to be integrable. Is boundedness just a way to guarantee that these two conditions hold, or is boundedness actually necessary?
I believe that boundedness must appear somewhere else since the gambling system where start with one dollar, we double the stakes whenever we loose and stop playing once we have won our dollar back, has each $H_n$ and $(H cdot X)_{n}$ integrable, even though the $H_n$ are not bounded.
The example I mean comes from Durrett (slightly modified, see comment at the end):
Let $X_n = sum_{i=1}^{n} chi_i$ where $chi_i = 1$ with probability $p$ and $-1$ with probability $1-p$. Let $H_n = 2H_{n-1}$ if $X_{n-1} = - 1$, $H_n = 0$ if $X_{n-1} = 1$. Then $mathbb{P}(H_n = 2^k) = p^k$ so $H_n$ is unbounded, but for each $n$, $H_n$ and $(H cdot X)_{n}$ are integrable.
Now since $mathbb{P}(H_n < infty)=1$, $mathbb{E}[ lim_{nto infty} (H cdot X)_{n}]=1$, i.e. we are sure to win our dollar back. So eventhough we started with a strict supermartingale (if $p<frac{1}{2}$) we ended up not loosing money, i.e. we kind of cheated the system. (I modified the example a little by setting $H_n=0$ after we win so that we do end up really winning the dollar back. In Durrett's example we start again betting 1 dollar once we have a net gain of 1, i.e. $H_n = 2H_{n-1}$ if $X_{n-1} = - 1$, $H_n = 1$ if $X_{n-1} = 1$.)
I now realize that this does not contradict the theorem. I was led to think that because after stating this example Durrett says "This system seems to provide us with a "sure thing" as long as $mathbb{P}(chi_m=1)>0$. However the next results says there is no system for beating an unfavorable game." So my new question is: can a gambling system prevent us from loosing while playing a strict supermartingale?
probability martingales gambling
add a comment |
Theorem 4.2.8 in Durrett: Probability Theory and Examples states
Let $X_n, n geq 0$ be a supermartingale. If $H_n geq 0$, is predictable and each $H_n$ is bounded then $(H cdot X)_n := sum_{m=1}^{n}H_m(X_m-X_{m-1})$ is a supermartingale.
While I know an example showing that this statement does not hold when $H_n$ is not bounded, I cannot see where we use boundedness in the proof. The proof is based on this equation:
$$mathbb{E}[(Hcdot X)_{n+1} | mathcal{F}_n ] = (Hcdot X)_{n} + mathbb{E}[H_{n+1}(X_{n+1}-X_{n}) | mathcal{F}_n ] = (Hcdot X)_{n} + H_{n+1}mathbb{E}[(X_{n+1}-X_{n}) | mathcal{F}_n ] leq (Hcdot X)_{n}
$$
since $H_{n+1} geq 0$ and $mathbb{E}[(X_{n+1}-X_{n}) | mathcal{F}_n ] leq 0$.
Now the properties of conditional expectation we use in this equation (linearity and that we can factor $H_{n+1}$ out because it is $mathcal{F}_n$ measurable) do require $(Hcdot X)_{n+1}$ and $H_{n+1}$ to be integrable. Is boundedness just a way to guarantee that these two conditions hold, or is boundedness actually necessary?
I believe that boundedness must appear somewhere else since the gambling system where start with one dollar, we double the stakes whenever we loose and stop playing once we have won our dollar back, has each $H_n$ and $(H cdot X)_{n}$ integrable, even though the $H_n$ are not bounded.
The example I mean comes from Durrett (slightly modified, see comment at the end):
Let $X_n = sum_{i=1}^{n} chi_i$ where $chi_i = 1$ with probability $p$ and $-1$ with probability $1-p$. Let $H_n = 2H_{n-1}$ if $X_{n-1} = - 1$, $H_n = 0$ if $X_{n-1} = 1$. Then $mathbb{P}(H_n = 2^k) = p^k$ so $H_n$ is unbounded, but for each $n$, $H_n$ and $(H cdot X)_{n}$ are integrable.
Now since $mathbb{P}(H_n < infty)=1$, $mathbb{E}[ lim_{nto infty} (H cdot X)_{n}]=1$, i.e. we are sure to win our dollar back. So eventhough we started with a strict supermartingale (if $p<frac{1}{2}$) we ended up not loosing money, i.e. we kind of cheated the system. (I modified the example a little by setting $H_n=0$ after we win so that we do end up really winning the dollar back. In Durrett's example we start again betting 1 dollar once we have a net gain of 1, i.e. $H_n = 2H_{n-1}$ if $X_{n-1} = - 1$, $H_n = 1$ if $X_{n-1} = 1$.)
I now realize that this does not contradict the theorem. I was led to think that because after stating this example Durrett says "This system seems to provide us with a "sure thing" as long as $mathbb{P}(chi_m=1)>0$. However the next results says there is no system for beating an unfavorable game." So my new question is: can a gambling system prevent us from loosing while playing a strict supermartingale?
probability martingales gambling
1
It is just a strong condition to avoid integrability problems.
– RRL
Nov 19 '18 at 6:00
@boukkoun : I did not understand the nature of your counter-example. You are suggesting a case when everything is integrable and still there are problems pulling out what is known, can you give details on that case? Your gamble example does not say what $H_n$ and $X_n$ are.
– Michael
Nov 19 '18 at 6:06
@Michael: I added the example, and needed to modify my question subsequently. Sorry about that. I still think that I got confused somewhere and would be really happy if you could clear that up!
– boukkoun
Nov 21 '18 at 6:57
@boukkoun : I couldn't follow your given example. What if $X_{n-1}=2$? Or $-2$? Perhaps you are mixing $X_n$ and $chi_n$ in one or more places. I suspect your example can be simplified by removing $X_n$ altogether. Intuitively I think you are just observing that double-or-nothing will almost surely (eventually) win. However, it requires an unbounded amount of money already in your account, an unbounded amount of time, it only wins one dollar, and risks a lot. If you already have an infinite number of dollars, there is no reason to try to win one more dollar.
– Michael
Nov 21 '18 at 17:29
If you repeat the process by starting over when you win (perhaps Durrett's original example) and sample at times you win, the winnings goes to $infty$ (so the $limsup$ of winnings is $infty$). However if the win probability is $leq 1/2$ it can be shown the $liminf$ of winnings is $-infty$ and you are often in (huge) debt.
– Michael
Nov 21 '18 at 17:47
add a comment |
Theorem 4.2.8 in Durrett: Probability Theory and Examples states
Let $X_n, n geq 0$ be a supermartingale. If $H_n geq 0$, is predictable and each $H_n$ is bounded then $(H cdot X)_n := sum_{m=1}^{n}H_m(X_m-X_{m-1})$ is a supermartingale.
While I know an example showing that this statement does not hold when $H_n$ is not bounded, I cannot see where we use boundedness in the proof. The proof is based on this equation:
$$mathbb{E}[(Hcdot X)_{n+1} | mathcal{F}_n ] = (Hcdot X)_{n} + mathbb{E}[H_{n+1}(X_{n+1}-X_{n}) | mathcal{F}_n ] = (Hcdot X)_{n} + H_{n+1}mathbb{E}[(X_{n+1}-X_{n}) | mathcal{F}_n ] leq (Hcdot X)_{n}
$$
since $H_{n+1} geq 0$ and $mathbb{E}[(X_{n+1}-X_{n}) | mathcal{F}_n ] leq 0$.
Now the properties of conditional expectation we use in this equation (linearity and that we can factor $H_{n+1}$ out because it is $mathcal{F}_n$ measurable) do require $(Hcdot X)_{n+1}$ and $H_{n+1}$ to be integrable. Is boundedness just a way to guarantee that these two conditions hold, or is boundedness actually necessary?
I believe that boundedness must appear somewhere else since the gambling system where start with one dollar, we double the stakes whenever we loose and stop playing once we have won our dollar back, has each $H_n$ and $(H cdot X)_{n}$ integrable, even though the $H_n$ are not bounded.
The example I mean comes from Durrett (slightly modified, see comment at the end):
Let $X_n = sum_{i=1}^{n} chi_i$ where $chi_i = 1$ with probability $p$ and $-1$ with probability $1-p$. Let $H_n = 2H_{n-1}$ if $X_{n-1} = - 1$, $H_n = 0$ if $X_{n-1} = 1$. Then $mathbb{P}(H_n = 2^k) = p^k$ so $H_n$ is unbounded, but for each $n$, $H_n$ and $(H cdot X)_{n}$ are integrable.
Now since $mathbb{P}(H_n < infty)=1$, $mathbb{E}[ lim_{nto infty} (H cdot X)_{n}]=1$, i.e. we are sure to win our dollar back. So eventhough we started with a strict supermartingale (if $p<frac{1}{2}$) we ended up not loosing money, i.e. we kind of cheated the system. (I modified the example a little by setting $H_n=0$ after we win so that we do end up really winning the dollar back. In Durrett's example we start again betting 1 dollar once we have a net gain of 1, i.e. $H_n = 2H_{n-1}$ if $X_{n-1} = - 1$, $H_n = 1$ if $X_{n-1} = 1$.)
I now realize that this does not contradict the theorem. I was led to think that because after stating this example Durrett says "This system seems to provide us with a "sure thing" as long as $mathbb{P}(chi_m=1)>0$. However the next results says there is no system for beating an unfavorable game." So my new question is: can a gambling system prevent us from loosing while playing a strict supermartingale?
probability martingales gambling
Theorem 4.2.8 in Durrett: Probability Theory and Examples states
Let $X_n, n geq 0$ be a supermartingale. If $H_n geq 0$, is predictable and each $H_n$ is bounded then $(H cdot X)_n := sum_{m=1}^{n}H_m(X_m-X_{m-1})$ is a supermartingale.
While I know an example showing that this statement does not hold when $H_n$ is not bounded, I cannot see where we use boundedness in the proof. The proof is based on this equation:
$$mathbb{E}[(Hcdot X)_{n+1} | mathcal{F}_n ] = (Hcdot X)_{n} + mathbb{E}[H_{n+1}(X_{n+1}-X_{n}) | mathcal{F}_n ] = (Hcdot X)_{n} + H_{n+1}mathbb{E}[(X_{n+1}-X_{n}) | mathcal{F}_n ] leq (Hcdot X)_{n}
$$
since $H_{n+1} geq 0$ and $mathbb{E}[(X_{n+1}-X_{n}) | mathcal{F}_n ] leq 0$.
Now the properties of conditional expectation we use in this equation (linearity and that we can factor $H_{n+1}$ out because it is $mathcal{F}_n$ measurable) do require $(Hcdot X)_{n+1}$ and $H_{n+1}$ to be integrable. Is boundedness just a way to guarantee that these two conditions hold, or is boundedness actually necessary?
I believe that boundedness must appear somewhere else since the gambling system where start with one dollar, we double the stakes whenever we loose and stop playing once we have won our dollar back, has each $H_n$ and $(H cdot X)_{n}$ integrable, even though the $H_n$ are not bounded.
The example I mean comes from Durrett (slightly modified, see comment at the end):
Let $X_n = sum_{i=1}^{n} chi_i$ where $chi_i = 1$ with probability $p$ and $-1$ with probability $1-p$. Let $H_n = 2H_{n-1}$ if $X_{n-1} = - 1$, $H_n = 0$ if $X_{n-1} = 1$. Then $mathbb{P}(H_n = 2^k) = p^k$ so $H_n$ is unbounded, but for each $n$, $H_n$ and $(H cdot X)_{n}$ are integrable.
Now since $mathbb{P}(H_n < infty)=1$, $mathbb{E}[ lim_{nto infty} (H cdot X)_{n}]=1$, i.e. we are sure to win our dollar back. So eventhough we started with a strict supermartingale (if $p<frac{1}{2}$) we ended up not loosing money, i.e. we kind of cheated the system. (I modified the example a little by setting $H_n=0$ after we win so that we do end up really winning the dollar back. In Durrett's example we start again betting 1 dollar once we have a net gain of 1, i.e. $H_n = 2H_{n-1}$ if $X_{n-1} = - 1$, $H_n = 1$ if $X_{n-1} = 1$.)
I now realize that this does not contradict the theorem. I was led to think that because after stating this example Durrett says "This system seems to provide us with a "sure thing" as long as $mathbb{P}(chi_m=1)>0$. However the next results says there is no system for beating an unfavorable game." So my new question is: can a gambling system prevent us from loosing while playing a strict supermartingale?
probability martingales gambling
probability martingales gambling
edited Nov 21 '18 at 6:54
asked Nov 19 '18 at 3:22
boukkoun
676
676
1
It is just a strong condition to avoid integrability problems.
– RRL
Nov 19 '18 at 6:00
@boukkoun : I did not understand the nature of your counter-example. You are suggesting a case when everything is integrable and still there are problems pulling out what is known, can you give details on that case? Your gamble example does not say what $H_n$ and $X_n$ are.
– Michael
Nov 19 '18 at 6:06
@Michael: I added the example, and needed to modify my question subsequently. Sorry about that. I still think that I got confused somewhere and would be really happy if you could clear that up!
– boukkoun
Nov 21 '18 at 6:57
@boukkoun : I couldn't follow your given example. What if $X_{n-1}=2$? Or $-2$? Perhaps you are mixing $X_n$ and $chi_n$ in one or more places. I suspect your example can be simplified by removing $X_n$ altogether. Intuitively I think you are just observing that double-or-nothing will almost surely (eventually) win. However, it requires an unbounded amount of money already in your account, an unbounded amount of time, it only wins one dollar, and risks a lot. If you already have an infinite number of dollars, there is no reason to try to win one more dollar.
– Michael
Nov 21 '18 at 17:29
If you repeat the process by starting over when you win (perhaps Durrett's original example) and sample at times you win, the winnings goes to $infty$ (so the $limsup$ of winnings is $infty$). However if the win probability is $leq 1/2$ it can be shown the $liminf$ of winnings is $-infty$ and you are often in (huge) debt.
– Michael
Nov 21 '18 at 17:47
add a comment |
1
It is just a strong condition to avoid integrability problems.
– RRL
Nov 19 '18 at 6:00
@boukkoun : I did not understand the nature of your counter-example. You are suggesting a case when everything is integrable and still there are problems pulling out what is known, can you give details on that case? Your gamble example does not say what $H_n$ and $X_n$ are.
– Michael
Nov 19 '18 at 6:06
@Michael: I added the example, and needed to modify my question subsequently. Sorry about that. I still think that I got confused somewhere and would be really happy if you could clear that up!
– boukkoun
Nov 21 '18 at 6:57
@boukkoun : I couldn't follow your given example. What if $X_{n-1}=2$? Or $-2$? Perhaps you are mixing $X_n$ and $chi_n$ in one or more places. I suspect your example can be simplified by removing $X_n$ altogether. Intuitively I think you are just observing that double-or-nothing will almost surely (eventually) win. However, it requires an unbounded amount of money already in your account, an unbounded amount of time, it only wins one dollar, and risks a lot. If you already have an infinite number of dollars, there is no reason to try to win one more dollar.
– Michael
Nov 21 '18 at 17:29
If you repeat the process by starting over when you win (perhaps Durrett's original example) and sample at times you win, the winnings goes to $infty$ (so the $limsup$ of winnings is $infty$). However if the win probability is $leq 1/2$ it can be shown the $liminf$ of winnings is $-infty$ and you are often in (huge) debt.
– Michael
Nov 21 '18 at 17:47
1
1
It is just a strong condition to avoid integrability problems.
– RRL
Nov 19 '18 at 6:00
It is just a strong condition to avoid integrability problems.
– RRL
Nov 19 '18 at 6:00
@boukkoun : I did not understand the nature of your counter-example. You are suggesting a case when everything is integrable and still there are problems pulling out what is known, can you give details on that case? Your gamble example does not say what $H_n$ and $X_n$ are.
– Michael
Nov 19 '18 at 6:06
@boukkoun : I did not understand the nature of your counter-example. You are suggesting a case when everything is integrable and still there are problems pulling out what is known, can you give details on that case? Your gamble example does not say what $H_n$ and $X_n$ are.
– Michael
Nov 19 '18 at 6:06
@Michael: I added the example, and needed to modify my question subsequently. Sorry about that. I still think that I got confused somewhere and would be really happy if you could clear that up!
– boukkoun
Nov 21 '18 at 6:57
@Michael: I added the example, and needed to modify my question subsequently. Sorry about that. I still think that I got confused somewhere and would be really happy if you could clear that up!
– boukkoun
Nov 21 '18 at 6:57
@boukkoun : I couldn't follow your given example. What if $X_{n-1}=2$? Or $-2$? Perhaps you are mixing $X_n$ and $chi_n$ in one or more places. I suspect your example can be simplified by removing $X_n$ altogether. Intuitively I think you are just observing that double-or-nothing will almost surely (eventually) win. However, it requires an unbounded amount of money already in your account, an unbounded amount of time, it only wins one dollar, and risks a lot. If you already have an infinite number of dollars, there is no reason to try to win one more dollar.
– Michael
Nov 21 '18 at 17:29
@boukkoun : I couldn't follow your given example. What if $X_{n-1}=2$? Or $-2$? Perhaps you are mixing $X_n$ and $chi_n$ in one or more places. I suspect your example can be simplified by removing $X_n$ altogether. Intuitively I think you are just observing that double-or-nothing will almost surely (eventually) win. However, it requires an unbounded amount of money already in your account, an unbounded amount of time, it only wins one dollar, and risks a lot. If you already have an infinite number of dollars, there is no reason to try to win one more dollar.
– Michael
Nov 21 '18 at 17:29
If you repeat the process by starting over when you win (perhaps Durrett's original example) and sample at times you win, the winnings goes to $infty$ (so the $limsup$ of winnings is $infty$). However if the win probability is $leq 1/2$ it can be shown the $liminf$ of winnings is $-infty$ and you are often in (huge) debt.
– Michael
Nov 21 '18 at 17:47
If you repeat the process by starting over when you win (perhaps Durrett's original example) and sample at times you win, the winnings goes to $infty$ (so the $limsup$ of winnings is $infty$). However if the win probability is $leq 1/2$ it can be shown the $liminf$ of winnings is $-infty$ and you are often in (huge) debt.
– Michael
Nov 21 '18 at 17:47
add a comment |
1 Answer
1
active
oldest
votes
Since $X_n$ is an (integrable) supermartingale, boundedness of $H_n$ guarantees that $H_nX_n$ is integrable.
Note that $x^{-1/2}$ is integrable on $[0,1]$ with respect to Lebesgue measure , but $x^{-1/2} cdot x^{-1/2}$ is not.
1
I think the crux of boukkon's question is: could we have imposed a weaker condition instead? I think the answer to that is yes, and that such a condition might have looked like, "Suppose $H_n$ is such that $mathbb E|H_n| < infty$ and $mathbb E|H_n X_n| < infty$." My best guess for why the theorem doesn't say that is that it's somewhat convoluted, and that the collection of cases for which that condition will be true and $H_n$ will also be unbounded is quite small in practice.
– Aaron Montgomery
Nov 19 '18 at 16:08
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004479%2fbounded-gambling-systems-theorem-4-2-8-in-durrett-probability-theory-and-examp%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Since $X_n$ is an (integrable) supermartingale, boundedness of $H_n$ guarantees that $H_nX_n$ is integrable.
Note that $x^{-1/2}$ is integrable on $[0,1]$ with respect to Lebesgue measure , but $x^{-1/2} cdot x^{-1/2}$ is not.
1
I think the crux of boukkon's question is: could we have imposed a weaker condition instead? I think the answer to that is yes, and that such a condition might have looked like, "Suppose $H_n$ is such that $mathbb E|H_n| < infty$ and $mathbb E|H_n X_n| < infty$." My best guess for why the theorem doesn't say that is that it's somewhat convoluted, and that the collection of cases for which that condition will be true and $H_n$ will also be unbounded is quite small in practice.
– Aaron Montgomery
Nov 19 '18 at 16:08
add a comment |
Since $X_n$ is an (integrable) supermartingale, boundedness of $H_n$ guarantees that $H_nX_n$ is integrable.
Note that $x^{-1/2}$ is integrable on $[0,1]$ with respect to Lebesgue measure , but $x^{-1/2} cdot x^{-1/2}$ is not.
1
I think the crux of boukkon's question is: could we have imposed a weaker condition instead? I think the answer to that is yes, and that such a condition might have looked like, "Suppose $H_n$ is such that $mathbb E|H_n| < infty$ and $mathbb E|H_n X_n| < infty$." My best guess for why the theorem doesn't say that is that it's somewhat convoluted, and that the collection of cases for which that condition will be true and $H_n$ will also be unbounded is quite small in practice.
– Aaron Montgomery
Nov 19 '18 at 16:08
add a comment |
Since $X_n$ is an (integrable) supermartingale, boundedness of $H_n$ guarantees that $H_nX_n$ is integrable.
Note that $x^{-1/2}$ is integrable on $[0,1]$ with respect to Lebesgue measure , but $x^{-1/2} cdot x^{-1/2}$ is not.
Since $X_n$ is an (integrable) supermartingale, boundedness of $H_n$ guarantees that $H_nX_n$ is integrable.
Note that $x^{-1/2}$ is integrable on $[0,1]$ with respect to Lebesgue measure , but $x^{-1/2} cdot x^{-1/2}$ is not.
answered Nov 19 '18 at 5:39
RRL
49k42573
49k42573
1
I think the crux of boukkon's question is: could we have imposed a weaker condition instead? I think the answer to that is yes, and that such a condition might have looked like, "Suppose $H_n$ is such that $mathbb E|H_n| < infty$ and $mathbb E|H_n X_n| < infty$." My best guess for why the theorem doesn't say that is that it's somewhat convoluted, and that the collection of cases for which that condition will be true and $H_n$ will also be unbounded is quite small in practice.
– Aaron Montgomery
Nov 19 '18 at 16:08
add a comment |
1
I think the crux of boukkon's question is: could we have imposed a weaker condition instead? I think the answer to that is yes, and that such a condition might have looked like, "Suppose $H_n$ is such that $mathbb E|H_n| < infty$ and $mathbb E|H_n X_n| < infty$." My best guess for why the theorem doesn't say that is that it's somewhat convoluted, and that the collection of cases for which that condition will be true and $H_n$ will also be unbounded is quite small in practice.
– Aaron Montgomery
Nov 19 '18 at 16:08
1
1
I think the crux of boukkon's question is: could we have imposed a weaker condition instead? I think the answer to that is yes, and that such a condition might have looked like, "Suppose $H_n$ is such that $mathbb E|H_n| < infty$ and $mathbb E|H_n X_n| < infty$." My best guess for why the theorem doesn't say that is that it's somewhat convoluted, and that the collection of cases for which that condition will be true and $H_n$ will also be unbounded is quite small in practice.
– Aaron Montgomery
Nov 19 '18 at 16:08
I think the crux of boukkon's question is: could we have imposed a weaker condition instead? I think the answer to that is yes, and that such a condition might have looked like, "Suppose $H_n$ is such that $mathbb E|H_n| < infty$ and $mathbb E|H_n X_n| < infty$." My best guess for why the theorem doesn't say that is that it's somewhat convoluted, and that the collection of cases for which that condition will be true and $H_n$ will also be unbounded is quite small in practice.
– Aaron Montgomery
Nov 19 '18 at 16:08
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004479%2fbounded-gambling-systems-theorem-4-2-8-in-durrett-probability-theory-and-examp%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
It is just a strong condition to avoid integrability problems.
– RRL
Nov 19 '18 at 6:00
@boukkoun : I did not understand the nature of your counter-example. You are suggesting a case when everything is integrable and still there are problems pulling out what is known, can you give details on that case? Your gamble example does not say what $H_n$ and $X_n$ are.
– Michael
Nov 19 '18 at 6:06
@Michael: I added the example, and needed to modify my question subsequently. Sorry about that. I still think that I got confused somewhere and would be really happy if you could clear that up!
– boukkoun
Nov 21 '18 at 6:57
@boukkoun : I couldn't follow your given example. What if $X_{n-1}=2$? Or $-2$? Perhaps you are mixing $X_n$ and $chi_n$ in one or more places. I suspect your example can be simplified by removing $X_n$ altogether. Intuitively I think you are just observing that double-or-nothing will almost surely (eventually) win. However, it requires an unbounded amount of money already in your account, an unbounded amount of time, it only wins one dollar, and risks a lot. If you already have an infinite number of dollars, there is no reason to try to win one more dollar.
– Michael
Nov 21 '18 at 17:29
If you repeat the process by starting over when you win (perhaps Durrett's original example) and sample at times you win, the winnings goes to $infty$ (so the $limsup$ of winnings is $infty$). However if the win probability is $leq 1/2$ it can be shown the $liminf$ of winnings is $-infty$ and you are often in (huge) debt.
– Michael
Nov 21 '18 at 17:47