Proving the chain rule with upper derivative
Let $f$ be a function on $[a,b]$, and $g$ is continuous on $[alpha,beta]$ that is differentiable at $gammain (alpha,beta)$ with $g(gamma)=c in (a,b).$ Show that
(i) If $g'(gamma)>0,$ then $overline{D}(f circ g)(gamma)=overline{D}f(c).g'(gamma).$
(ii) If $g'(gamma)=0$, and $overline{D}f(c)$, $underline{D}f(c)$ finite, then $overline{D}(f circ g)(gamma)=0.$
By the definition we have that $$overline{D}(f circ g)(gamma)=lim_{h rightarrow 0}supfrac{(f circ g)(gamma+h)-(f circ g)(gamma)}{h}=lim_{h rightarrow 0}supfrac{f (g(gamma+h))-f (g(gamma))}{h}.$$
Since $g$ is differantiable at $gamma$ then, $overline{D}g(gamma)=g'(gamma)>0$, and by the definition of the differentiability existence $overline{D}g(gamma)=g'(gamma)$ is finite, so we can multiply and divide (1) by $g'(gamma)$, so
begin{align*}
begin{split}
& lim_{h rightarrow 0}supfrac{f (g(gamma+h))-f (g(gamma))}{h}= lim_{h rightarrow 0}sup left(frac{f (g(gamma+h))-f (g(gamma))}{h}right).frac{g'(gamma)}{g'(gamma)}
\ &= lim_{h rightarrow 0}sup left(frac{f (g(gamma+h))-f (g(gamma))}{h}. frac{g(gamma+h)-g(gamma)}{g(gamma+h)-g(gamma)} right)=left(lim_{h rightarrow 0}supfrac{f(g(gamma+h))-f(g(gamma))}{g(gamma+h)-g(gamma)}right).g'(gamma)
end{split}
end{align*}
where we used the limit properties for the quantity before the last quantity. Now, define $u:=frac{g(gamma+h)-g(gamma)}{h}-g'(gamma)$, and note that $u$ depends on $h$. Moreover, we see $u rightarrow 0$ as $h rightarrow 0$, and we have $g(gamma+h)=(u+g'(gamma))h+g(gamma)=(u+g'(gamma))h+c,$ so $g(gamma+h)-c=g(gamma+h)-g(gamma)=(u+g'(gamma))h.$ Thus, $$left(lim_{h rightarrow 0}sup frac{f(g(gamma+h))-f(g(gamma))}{g(gamma+h)-g(gamma)}right).g'(gamma)=left(lim_{h rightarrow 0} sup frac{f((u+g'(gamma)h+c)-f(c)}{(u+g'(gamma))h}right).g'(gamma) $$
Then, I am saying that $$lim_{h rightarrow 0} sup frac{f((u+g'(gamma)h+c)-f(c)}{(u+g'(gamma))h}=lim_{(u+g'(gamma)h rightarrow 0} sup frac{f((u+g'(gamma)h+c)-f(c)}{(u+g'(gamma))h}=overline{D}f(c)$$
which is I am not sure about it, and I dont know how to use the continuity of $g$ here.
Thanks for any help.
measure-theory lebesgue-measure
add a comment |
Let $f$ be a function on $[a,b]$, and $g$ is continuous on $[alpha,beta]$ that is differentiable at $gammain (alpha,beta)$ with $g(gamma)=c in (a,b).$ Show that
(i) If $g'(gamma)>0,$ then $overline{D}(f circ g)(gamma)=overline{D}f(c).g'(gamma).$
(ii) If $g'(gamma)=0$, and $overline{D}f(c)$, $underline{D}f(c)$ finite, then $overline{D}(f circ g)(gamma)=0.$
By the definition we have that $$overline{D}(f circ g)(gamma)=lim_{h rightarrow 0}supfrac{(f circ g)(gamma+h)-(f circ g)(gamma)}{h}=lim_{h rightarrow 0}supfrac{f (g(gamma+h))-f (g(gamma))}{h}.$$
Since $g$ is differantiable at $gamma$ then, $overline{D}g(gamma)=g'(gamma)>0$, and by the definition of the differentiability existence $overline{D}g(gamma)=g'(gamma)$ is finite, so we can multiply and divide (1) by $g'(gamma)$, so
begin{align*}
begin{split}
& lim_{h rightarrow 0}supfrac{f (g(gamma+h))-f (g(gamma))}{h}= lim_{h rightarrow 0}sup left(frac{f (g(gamma+h))-f (g(gamma))}{h}right).frac{g'(gamma)}{g'(gamma)}
\ &= lim_{h rightarrow 0}sup left(frac{f (g(gamma+h))-f (g(gamma))}{h}. frac{g(gamma+h)-g(gamma)}{g(gamma+h)-g(gamma)} right)=left(lim_{h rightarrow 0}supfrac{f(g(gamma+h))-f(g(gamma))}{g(gamma+h)-g(gamma)}right).g'(gamma)
end{split}
end{align*}
where we used the limit properties for the quantity before the last quantity. Now, define $u:=frac{g(gamma+h)-g(gamma)}{h}-g'(gamma)$, and note that $u$ depends on $h$. Moreover, we see $u rightarrow 0$ as $h rightarrow 0$, and we have $g(gamma+h)=(u+g'(gamma))h+g(gamma)=(u+g'(gamma))h+c,$ so $g(gamma+h)-c=g(gamma+h)-g(gamma)=(u+g'(gamma))h.$ Thus, $$left(lim_{h rightarrow 0}sup frac{f(g(gamma+h))-f(g(gamma))}{g(gamma+h)-g(gamma)}right).g'(gamma)=left(lim_{h rightarrow 0} sup frac{f((u+g'(gamma)h+c)-f(c)}{(u+g'(gamma))h}right).g'(gamma) $$
Then, I am saying that $$lim_{h rightarrow 0} sup frac{f((u+g'(gamma)h+c)-f(c)}{(u+g'(gamma))h}=lim_{(u+g'(gamma)h rightarrow 0} sup frac{f((u+g'(gamma)h+c)-f(c)}{(u+g'(gamma))h}=overline{D}f(c)$$
which is I am not sure about it, and I dont know how to use the continuity of $g$ here.
Thanks for any help.
measure-theory lebesgue-measure
add a comment |
Let $f$ be a function on $[a,b]$, and $g$ is continuous on $[alpha,beta]$ that is differentiable at $gammain (alpha,beta)$ with $g(gamma)=c in (a,b).$ Show that
(i) If $g'(gamma)>0,$ then $overline{D}(f circ g)(gamma)=overline{D}f(c).g'(gamma).$
(ii) If $g'(gamma)=0$, and $overline{D}f(c)$, $underline{D}f(c)$ finite, then $overline{D}(f circ g)(gamma)=0.$
By the definition we have that $$overline{D}(f circ g)(gamma)=lim_{h rightarrow 0}supfrac{(f circ g)(gamma+h)-(f circ g)(gamma)}{h}=lim_{h rightarrow 0}supfrac{f (g(gamma+h))-f (g(gamma))}{h}.$$
Since $g$ is differantiable at $gamma$ then, $overline{D}g(gamma)=g'(gamma)>0$, and by the definition of the differentiability existence $overline{D}g(gamma)=g'(gamma)$ is finite, so we can multiply and divide (1) by $g'(gamma)$, so
begin{align*}
begin{split}
& lim_{h rightarrow 0}supfrac{f (g(gamma+h))-f (g(gamma))}{h}= lim_{h rightarrow 0}sup left(frac{f (g(gamma+h))-f (g(gamma))}{h}right).frac{g'(gamma)}{g'(gamma)}
\ &= lim_{h rightarrow 0}sup left(frac{f (g(gamma+h))-f (g(gamma))}{h}. frac{g(gamma+h)-g(gamma)}{g(gamma+h)-g(gamma)} right)=left(lim_{h rightarrow 0}supfrac{f(g(gamma+h))-f(g(gamma))}{g(gamma+h)-g(gamma)}right).g'(gamma)
end{split}
end{align*}
where we used the limit properties for the quantity before the last quantity. Now, define $u:=frac{g(gamma+h)-g(gamma)}{h}-g'(gamma)$, and note that $u$ depends on $h$. Moreover, we see $u rightarrow 0$ as $h rightarrow 0$, and we have $g(gamma+h)=(u+g'(gamma))h+g(gamma)=(u+g'(gamma))h+c,$ so $g(gamma+h)-c=g(gamma+h)-g(gamma)=(u+g'(gamma))h.$ Thus, $$left(lim_{h rightarrow 0}sup frac{f(g(gamma+h))-f(g(gamma))}{g(gamma+h)-g(gamma)}right).g'(gamma)=left(lim_{h rightarrow 0} sup frac{f((u+g'(gamma)h+c)-f(c)}{(u+g'(gamma))h}right).g'(gamma) $$
Then, I am saying that $$lim_{h rightarrow 0} sup frac{f((u+g'(gamma)h+c)-f(c)}{(u+g'(gamma))h}=lim_{(u+g'(gamma)h rightarrow 0} sup frac{f((u+g'(gamma)h+c)-f(c)}{(u+g'(gamma))h}=overline{D}f(c)$$
which is I am not sure about it, and I dont know how to use the continuity of $g$ here.
Thanks for any help.
measure-theory lebesgue-measure
Let $f$ be a function on $[a,b]$, and $g$ is continuous on $[alpha,beta]$ that is differentiable at $gammain (alpha,beta)$ with $g(gamma)=c in (a,b).$ Show that
(i) If $g'(gamma)>0,$ then $overline{D}(f circ g)(gamma)=overline{D}f(c).g'(gamma).$
(ii) If $g'(gamma)=0$, and $overline{D}f(c)$, $underline{D}f(c)$ finite, then $overline{D}(f circ g)(gamma)=0.$
By the definition we have that $$overline{D}(f circ g)(gamma)=lim_{h rightarrow 0}supfrac{(f circ g)(gamma+h)-(f circ g)(gamma)}{h}=lim_{h rightarrow 0}supfrac{f (g(gamma+h))-f (g(gamma))}{h}.$$
Since $g$ is differantiable at $gamma$ then, $overline{D}g(gamma)=g'(gamma)>0$, and by the definition of the differentiability existence $overline{D}g(gamma)=g'(gamma)$ is finite, so we can multiply and divide (1) by $g'(gamma)$, so
begin{align*}
begin{split}
& lim_{h rightarrow 0}supfrac{f (g(gamma+h))-f (g(gamma))}{h}= lim_{h rightarrow 0}sup left(frac{f (g(gamma+h))-f (g(gamma))}{h}right).frac{g'(gamma)}{g'(gamma)}
\ &= lim_{h rightarrow 0}sup left(frac{f (g(gamma+h))-f (g(gamma))}{h}. frac{g(gamma+h)-g(gamma)}{g(gamma+h)-g(gamma)} right)=left(lim_{h rightarrow 0}supfrac{f(g(gamma+h))-f(g(gamma))}{g(gamma+h)-g(gamma)}right).g'(gamma)
end{split}
end{align*}
where we used the limit properties for the quantity before the last quantity. Now, define $u:=frac{g(gamma+h)-g(gamma)}{h}-g'(gamma)$, and note that $u$ depends on $h$. Moreover, we see $u rightarrow 0$ as $h rightarrow 0$, and we have $g(gamma+h)=(u+g'(gamma))h+g(gamma)=(u+g'(gamma))h+c,$ so $g(gamma+h)-c=g(gamma+h)-g(gamma)=(u+g'(gamma))h.$ Thus, $$left(lim_{h rightarrow 0}sup frac{f(g(gamma+h))-f(g(gamma))}{g(gamma+h)-g(gamma)}right).g'(gamma)=left(lim_{h rightarrow 0} sup frac{f((u+g'(gamma)h+c)-f(c)}{(u+g'(gamma))h}right).g'(gamma) $$
Then, I am saying that $$lim_{h rightarrow 0} sup frac{f((u+g'(gamma)h+c)-f(c)}{(u+g'(gamma))h}=lim_{(u+g'(gamma)h rightarrow 0} sup frac{f((u+g'(gamma)h+c)-f(c)}{(u+g'(gamma))h}=overline{D}f(c)$$
which is I am not sure about it, and I dont know how to use the continuity of $g$ here.
Thanks for any help.
measure-theory lebesgue-measure
measure-theory lebesgue-measure
asked Nov 19 '18 at 1:47
Ahmed
29019
29019
add a comment |
add a comment |
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004408%2fproving-the-chain-rule-with-upper-derivative%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004408%2fproving-the-chain-rule-with-upper-derivative%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown