Proving the chain rule with upper derivative












0














Let $f$ be a function on $[a,b]$, and $g$ is continuous on $[alpha,beta]$ that is differentiable at $gammain (alpha,beta)$ with $g(gamma)=c in (a,b).$ Show that



(i) If $g'(gamma)>0,$ then $overline{D}(f circ g)(gamma)=overline{D}f(c).g'(gamma).$



(ii) If $g'(gamma)=0$, and $overline{D}f(c)$, $underline{D}f(c)$ finite, then $overline{D}(f circ g)(gamma)=0.$



By the definition we have that $$overline{D}(f circ g)(gamma)=lim_{h rightarrow 0}supfrac{(f circ g)(gamma+h)-(f circ g)(gamma)}{h}=lim_{h rightarrow 0}supfrac{f (g(gamma+h))-f (g(gamma))}{h}.$$
Since $g$ is differantiable at $gamma$ then, $overline{D}g(gamma)=g'(gamma)>0$, and by the definition of the differentiability existence $overline{D}g(gamma)=g'(gamma)$ is finite, so we can multiply and divide (1) by $g'(gamma)$, so
begin{align*}
begin{split}
& lim_{h rightarrow 0}supfrac{f (g(gamma+h))-f (g(gamma))}{h}= lim_{h rightarrow 0}sup left(frac{f (g(gamma+h))-f (g(gamma))}{h}right).frac{g'(gamma)}{g'(gamma)}
\ &= lim_{h rightarrow 0}sup left(frac{f (g(gamma+h))-f (g(gamma))}{h}. frac{g(gamma+h)-g(gamma)}{g(gamma+h)-g(gamma)} right)=left(lim_{h rightarrow 0}supfrac{f(g(gamma+h))-f(g(gamma))}{g(gamma+h)-g(gamma)}right).g'(gamma)
end{split}
end{align*}

where we used the limit properties for the quantity before the last quantity. Now, define $u:=frac{g(gamma+h)-g(gamma)}{h}-g'(gamma)$, and note that $u$ depends on $h$. Moreover, we see $u rightarrow 0$ as $h rightarrow 0$, and we have $g(gamma+h)=(u+g'(gamma))h+g(gamma)=(u+g'(gamma))h+c,$ so $g(gamma+h)-c=g(gamma+h)-g(gamma)=(u+g'(gamma))h.$ Thus, $$left(lim_{h rightarrow 0}sup frac{f(g(gamma+h))-f(g(gamma))}{g(gamma+h)-g(gamma)}right).g'(gamma)=left(lim_{h rightarrow 0} sup frac{f((u+g'(gamma)h+c)-f(c)}{(u+g'(gamma))h}right).g'(gamma) $$



Then, I am saying that $$lim_{h rightarrow 0} sup frac{f((u+g'(gamma)h+c)-f(c)}{(u+g'(gamma))h}=lim_{(u+g'(gamma)h rightarrow 0} sup frac{f((u+g'(gamma)h+c)-f(c)}{(u+g'(gamma))h}=overline{D}f(c)$$
which is I am not sure about it, and I dont know how to use the continuity of $g$ here.



Thanks for any help.










share|cite|improve this question



























    0














    Let $f$ be a function on $[a,b]$, and $g$ is continuous on $[alpha,beta]$ that is differentiable at $gammain (alpha,beta)$ with $g(gamma)=c in (a,b).$ Show that



    (i) If $g'(gamma)>0,$ then $overline{D}(f circ g)(gamma)=overline{D}f(c).g'(gamma).$



    (ii) If $g'(gamma)=0$, and $overline{D}f(c)$, $underline{D}f(c)$ finite, then $overline{D}(f circ g)(gamma)=0.$



    By the definition we have that $$overline{D}(f circ g)(gamma)=lim_{h rightarrow 0}supfrac{(f circ g)(gamma+h)-(f circ g)(gamma)}{h}=lim_{h rightarrow 0}supfrac{f (g(gamma+h))-f (g(gamma))}{h}.$$
    Since $g$ is differantiable at $gamma$ then, $overline{D}g(gamma)=g'(gamma)>0$, and by the definition of the differentiability existence $overline{D}g(gamma)=g'(gamma)$ is finite, so we can multiply and divide (1) by $g'(gamma)$, so
    begin{align*}
    begin{split}
    & lim_{h rightarrow 0}supfrac{f (g(gamma+h))-f (g(gamma))}{h}= lim_{h rightarrow 0}sup left(frac{f (g(gamma+h))-f (g(gamma))}{h}right).frac{g'(gamma)}{g'(gamma)}
    \ &= lim_{h rightarrow 0}sup left(frac{f (g(gamma+h))-f (g(gamma))}{h}. frac{g(gamma+h)-g(gamma)}{g(gamma+h)-g(gamma)} right)=left(lim_{h rightarrow 0}supfrac{f(g(gamma+h))-f(g(gamma))}{g(gamma+h)-g(gamma)}right).g'(gamma)
    end{split}
    end{align*}

    where we used the limit properties for the quantity before the last quantity. Now, define $u:=frac{g(gamma+h)-g(gamma)}{h}-g'(gamma)$, and note that $u$ depends on $h$. Moreover, we see $u rightarrow 0$ as $h rightarrow 0$, and we have $g(gamma+h)=(u+g'(gamma))h+g(gamma)=(u+g'(gamma))h+c,$ so $g(gamma+h)-c=g(gamma+h)-g(gamma)=(u+g'(gamma))h.$ Thus, $$left(lim_{h rightarrow 0}sup frac{f(g(gamma+h))-f(g(gamma))}{g(gamma+h)-g(gamma)}right).g'(gamma)=left(lim_{h rightarrow 0} sup frac{f((u+g'(gamma)h+c)-f(c)}{(u+g'(gamma))h}right).g'(gamma) $$



    Then, I am saying that $$lim_{h rightarrow 0} sup frac{f((u+g'(gamma)h+c)-f(c)}{(u+g'(gamma))h}=lim_{(u+g'(gamma)h rightarrow 0} sup frac{f((u+g'(gamma)h+c)-f(c)}{(u+g'(gamma))h}=overline{D}f(c)$$
    which is I am not sure about it, and I dont know how to use the continuity of $g$ here.



    Thanks for any help.










    share|cite|improve this question

























      0












      0








      0







      Let $f$ be a function on $[a,b]$, and $g$ is continuous on $[alpha,beta]$ that is differentiable at $gammain (alpha,beta)$ with $g(gamma)=c in (a,b).$ Show that



      (i) If $g'(gamma)>0,$ then $overline{D}(f circ g)(gamma)=overline{D}f(c).g'(gamma).$



      (ii) If $g'(gamma)=0$, and $overline{D}f(c)$, $underline{D}f(c)$ finite, then $overline{D}(f circ g)(gamma)=0.$



      By the definition we have that $$overline{D}(f circ g)(gamma)=lim_{h rightarrow 0}supfrac{(f circ g)(gamma+h)-(f circ g)(gamma)}{h}=lim_{h rightarrow 0}supfrac{f (g(gamma+h))-f (g(gamma))}{h}.$$
      Since $g$ is differantiable at $gamma$ then, $overline{D}g(gamma)=g'(gamma)>0$, and by the definition of the differentiability existence $overline{D}g(gamma)=g'(gamma)$ is finite, so we can multiply and divide (1) by $g'(gamma)$, so
      begin{align*}
      begin{split}
      & lim_{h rightarrow 0}supfrac{f (g(gamma+h))-f (g(gamma))}{h}= lim_{h rightarrow 0}sup left(frac{f (g(gamma+h))-f (g(gamma))}{h}right).frac{g'(gamma)}{g'(gamma)}
      \ &= lim_{h rightarrow 0}sup left(frac{f (g(gamma+h))-f (g(gamma))}{h}. frac{g(gamma+h)-g(gamma)}{g(gamma+h)-g(gamma)} right)=left(lim_{h rightarrow 0}supfrac{f(g(gamma+h))-f(g(gamma))}{g(gamma+h)-g(gamma)}right).g'(gamma)
      end{split}
      end{align*}

      where we used the limit properties for the quantity before the last quantity. Now, define $u:=frac{g(gamma+h)-g(gamma)}{h}-g'(gamma)$, and note that $u$ depends on $h$. Moreover, we see $u rightarrow 0$ as $h rightarrow 0$, and we have $g(gamma+h)=(u+g'(gamma))h+g(gamma)=(u+g'(gamma))h+c,$ so $g(gamma+h)-c=g(gamma+h)-g(gamma)=(u+g'(gamma))h.$ Thus, $$left(lim_{h rightarrow 0}sup frac{f(g(gamma+h))-f(g(gamma))}{g(gamma+h)-g(gamma)}right).g'(gamma)=left(lim_{h rightarrow 0} sup frac{f((u+g'(gamma)h+c)-f(c)}{(u+g'(gamma))h}right).g'(gamma) $$



      Then, I am saying that $$lim_{h rightarrow 0} sup frac{f((u+g'(gamma)h+c)-f(c)}{(u+g'(gamma))h}=lim_{(u+g'(gamma)h rightarrow 0} sup frac{f((u+g'(gamma)h+c)-f(c)}{(u+g'(gamma))h}=overline{D}f(c)$$
      which is I am not sure about it, and I dont know how to use the continuity of $g$ here.



      Thanks for any help.










      share|cite|improve this question













      Let $f$ be a function on $[a,b]$, and $g$ is continuous on $[alpha,beta]$ that is differentiable at $gammain (alpha,beta)$ with $g(gamma)=c in (a,b).$ Show that



      (i) If $g'(gamma)>0,$ then $overline{D}(f circ g)(gamma)=overline{D}f(c).g'(gamma).$



      (ii) If $g'(gamma)=0$, and $overline{D}f(c)$, $underline{D}f(c)$ finite, then $overline{D}(f circ g)(gamma)=0.$



      By the definition we have that $$overline{D}(f circ g)(gamma)=lim_{h rightarrow 0}supfrac{(f circ g)(gamma+h)-(f circ g)(gamma)}{h}=lim_{h rightarrow 0}supfrac{f (g(gamma+h))-f (g(gamma))}{h}.$$
      Since $g$ is differantiable at $gamma$ then, $overline{D}g(gamma)=g'(gamma)>0$, and by the definition of the differentiability existence $overline{D}g(gamma)=g'(gamma)$ is finite, so we can multiply and divide (1) by $g'(gamma)$, so
      begin{align*}
      begin{split}
      & lim_{h rightarrow 0}supfrac{f (g(gamma+h))-f (g(gamma))}{h}= lim_{h rightarrow 0}sup left(frac{f (g(gamma+h))-f (g(gamma))}{h}right).frac{g'(gamma)}{g'(gamma)}
      \ &= lim_{h rightarrow 0}sup left(frac{f (g(gamma+h))-f (g(gamma))}{h}. frac{g(gamma+h)-g(gamma)}{g(gamma+h)-g(gamma)} right)=left(lim_{h rightarrow 0}supfrac{f(g(gamma+h))-f(g(gamma))}{g(gamma+h)-g(gamma)}right).g'(gamma)
      end{split}
      end{align*}

      where we used the limit properties for the quantity before the last quantity. Now, define $u:=frac{g(gamma+h)-g(gamma)}{h}-g'(gamma)$, and note that $u$ depends on $h$. Moreover, we see $u rightarrow 0$ as $h rightarrow 0$, and we have $g(gamma+h)=(u+g'(gamma))h+g(gamma)=(u+g'(gamma))h+c,$ so $g(gamma+h)-c=g(gamma+h)-g(gamma)=(u+g'(gamma))h.$ Thus, $$left(lim_{h rightarrow 0}sup frac{f(g(gamma+h))-f(g(gamma))}{g(gamma+h)-g(gamma)}right).g'(gamma)=left(lim_{h rightarrow 0} sup frac{f((u+g'(gamma)h+c)-f(c)}{(u+g'(gamma))h}right).g'(gamma) $$



      Then, I am saying that $$lim_{h rightarrow 0} sup frac{f((u+g'(gamma)h+c)-f(c)}{(u+g'(gamma))h}=lim_{(u+g'(gamma)h rightarrow 0} sup frac{f((u+g'(gamma)h+c)-f(c)}{(u+g'(gamma))h}=overline{D}f(c)$$
      which is I am not sure about it, and I dont know how to use the continuity of $g$ here.



      Thanks for any help.







      measure-theory lebesgue-measure






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 19 '18 at 1:47









      Ahmed

      29019




      29019



























          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004408%2fproving-the-chain-rule-with-upper-derivative%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004408%2fproving-the-chain-rule-with-upper-derivative%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          AnyDesk - Fatal Program Failure

          How to calibrate 16:9 built-in touch-screen to a 4:3 resolution?

          QoS: MAC-Priority for clients behind a repeater