rotation of spherical coordinate system
If I rotate the coordinate system by spherical angles θ and ϕ, and the vector in the new system is v'=(x′,y′,z′), what is its coordinate (x,y,z) in the original coordinate system? Thank you in advance!
matrices coordinate-systems
add a comment |
If I rotate the coordinate system by spherical angles θ and ϕ, and the vector in the new system is v'=(x′,y′,z′), what is its coordinate (x,y,z) in the original coordinate system? Thank you in advance!
matrices coordinate-systems
add a comment |
If I rotate the coordinate system by spherical angles θ and ϕ, and the vector in the new system is v'=(x′,y′,z′), what is its coordinate (x,y,z) in the original coordinate system? Thank you in advance!
matrices coordinate-systems
If I rotate the coordinate system by spherical angles θ and ϕ, and the vector in the new system is v'=(x′,y′,z′), what is its coordinate (x,y,z) in the original coordinate system? Thank you in advance!
matrices coordinate-systems
matrices coordinate-systems
asked Nov 19 '18 at 3:42
Alicia
82
82
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
It's not immediately clear what is your coordinate system, and how you define rotations. Let's assume that you have first a rotation around $x$ axis by angle $theta$, then a rotation around $z$ axis by angle $phi$. You can then write $$textrm v'=R_z(phi)R_x(theta)textrm v$$
Note the order of rotations in the above equation. You can find the matrix representation of this rotation on wikipedia for example.
Then just multiplying with the inverses, in reverse order, you get
$$R_x^{-1}(theta)R_z^{-1}(phi)textrm v'=R_x^{-1}(theta)R_z^{-1}(phi)R_z(phi)R_x(theta)textrm v=textrm v$$
Note that the inverse of the simple rotation matrices can be written as the transpose or rotation by negative angle:
$R^{-1}(alpha)=R^T(alpha)=R(-alpha)$
Thank you so much for your reply! It helps! I just have one more question about the order of rotations. The new coordinate system is created as following: there is a point on the sphere with coordinate (θ, ϕ); The line passing through the origin and this point is my new z axis (the orientation of x and y axes don't matter). In this case, should I first rotate around x axis by angle θ, or rotate aroung z axis by angle ϕ?
– Alicia
Nov 19 '18 at 15:58
You need to rotate first around your new $z$ axis by $-phi$. That way your $x'$ axis rotates first to $x$.
– Andrei
Nov 19 '18 at 16:57
I see, thank you a lot!
– Alicia
Nov 19 '18 at 17:25
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004492%2frotation-of-spherical-coordinate-system%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
It's not immediately clear what is your coordinate system, and how you define rotations. Let's assume that you have first a rotation around $x$ axis by angle $theta$, then a rotation around $z$ axis by angle $phi$. You can then write $$textrm v'=R_z(phi)R_x(theta)textrm v$$
Note the order of rotations in the above equation. You can find the matrix representation of this rotation on wikipedia for example.
Then just multiplying with the inverses, in reverse order, you get
$$R_x^{-1}(theta)R_z^{-1}(phi)textrm v'=R_x^{-1}(theta)R_z^{-1}(phi)R_z(phi)R_x(theta)textrm v=textrm v$$
Note that the inverse of the simple rotation matrices can be written as the transpose or rotation by negative angle:
$R^{-1}(alpha)=R^T(alpha)=R(-alpha)$
Thank you so much for your reply! It helps! I just have one more question about the order of rotations. The new coordinate system is created as following: there is a point on the sphere with coordinate (θ, ϕ); The line passing through the origin and this point is my new z axis (the orientation of x and y axes don't matter). In this case, should I first rotate around x axis by angle θ, or rotate aroung z axis by angle ϕ?
– Alicia
Nov 19 '18 at 15:58
You need to rotate first around your new $z$ axis by $-phi$. That way your $x'$ axis rotates first to $x$.
– Andrei
Nov 19 '18 at 16:57
I see, thank you a lot!
– Alicia
Nov 19 '18 at 17:25
add a comment |
It's not immediately clear what is your coordinate system, and how you define rotations. Let's assume that you have first a rotation around $x$ axis by angle $theta$, then a rotation around $z$ axis by angle $phi$. You can then write $$textrm v'=R_z(phi)R_x(theta)textrm v$$
Note the order of rotations in the above equation. You can find the matrix representation of this rotation on wikipedia for example.
Then just multiplying with the inverses, in reverse order, you get
$$R_x^{-1}(theta)R_z^{-1}(phi)textrm v'=R_x^{-1}(theta)R_z^{-1}(phi)R_z(phi)R_x(theta)textrm v=textrm v$$
Note that the inverse of the simple rotation matrices can be written as the transpose or rotation by negative angle:
$R^{-1}(alpha)=R^T(alpha)=R(-alpha)$
Thank you so much for your reply! It helps! I just have one more question about the order of rotations. The new coordinate system is created as following: there is a point on the sphere with coordinate (θ, ϕ); The line passing through the origin and this point is my new z axis (the orientation of x and y axes don't matter). In this case, should I first rotate around x axis by angle θ, or rotate aroung z axis by angle ϕ?
– Alicia
Nov 19 '18 at 15:58
You need to rotate first around your new $z$ axis by $-phi$. That way your $x'$ axis rotates first to $x$.
– Andrei
Nov 19 '18 at 16:57
I see, thank you a lot!
– Alicia
Nov 19 '18 at 17:25
add a comment |
It's not immediately clear what is your coordinate system, and how you define rotations. Let's assume that you have first a rotation around $x$ axis by angle $theta$, then a rotation around $z$ axis by angle $phi$. You can then write $$textrm v'=R_z(phi)R_x(theta)textrm v$$
Note the order of rotations in the above equation. You can find the matrix representation of this rotation on wikipedia for example.
Then just multiplying with the inverses, in reverse order, you get
$$R_x^{-1}(theta)R_z^{-1}(phi)textrm v'=R_x^{-1}(theta)R_z^{-1}(phi)R_z(phi)R_x(theta)textrm v=textrm v$$
Note that the inverse of the simple rotation matrices can be written as the transpose or rotation by negative angle:
$R^{-1}(alpha)=R^T(alpha)=R(-alpha)$
It's not immediately clear what is your coordinate system, and how you define rotations. Let's assume that you have first a rotation around $x$ axis by angle $theta$, then a rotation around $z$ axis by angle $phi$. You can then write $$textrm v'=R_z(phi)R_x(theta)textrm v$$
Note the order of rotations in the above equation. You can find the matrix representation of this rotation on wikipedia for example.
Then just multiplying with the inverses, in reverse order, you get
$$R_x^{-1}(theta)R_z^{-1}(phi)textrm v'=R_x^{-1}(theta)R_z^{-1}(phi)R_z(phi)R_x(theta)textrm v=textrm v$$
Note that the inverse of the simple rotation matrices can be written as the transpose or rotation by negative angle:
$R^{-1}(alpha)=R^T(alpha)=R(-alpha)$
answered Nov 19 '18 at 4:34
Andrei
11.2k21026
11.2k21026
Thank you so much for your reply! It helps! I just have one more question about the order of rotations. The new coordinate system is created as following: there is a point on the sphere with coordinate (θ, ϕ); The line passing through the origin and this point is my new z axis (the orientation of x and y axes don't matter). In this case, should I first rotate around x axis by angle θ, or rotate aroung z axis by angle ϕ?
– Alicia
Nov 19 '18 at 15:58
You need to rotate first around your new $z$ axis by $-phi$. That way your $x'$ axis rotates first to $x$.
– Andrei
Nov 19 '18 at 16:57
I see, thank you a lot!
– Alicia
Nov 19 '18 at 17:25
add a comment |
Thank you so much for your reply! It helps! I just have one more question about the order of rotations. The new coordinate system is created as following: there is a point on the sphere with coordinate (θ, ϕ); The line passing through the origin and this point is my new z axis (the orientation of x and y axes don't matter). In this case, should I first rotate around x axis by angle θ, or rotate aroung z axis by angle ϕ?
– Alicia
Nov 19 '18 at 15:58
You need to rotate first around your new $z$ axis by $-phi$. That way your $x'$ axis rotates first to $x$.
– Andrei
Nov 19 '18 at 16:57
I see, thank you a lot!
– Alicia
Nov 19 '18 at 17:25
Thank you so much for your reply! It helps! I just have one more question about the order of rotations. The new coordinate system is created as following: there is a point on the sphere with coordinate (θ, ϕ); The line passing through the origin and this point is my new z axis (the orientation of x and y axes don't matter). In this case, should I first rotate around x axis by angle θ, or rotate aroung z axis by angle ϕ?
– Alicia
Nov 19 '18 at 15:58
Thank you so much for your reply! It helps! I just have one more question about the order of rotations. The new coordinate system is created as following: there is a point on the sphere with coordinate (θ, ϕ); The line passing through the origin and this point is my new z axis (the orientation of x and y axes don't matter). In this case, should I first rotate around x axis by angle θ, or rotate aroung z axis by angle ϕ?
– Alicia
Nov 19 '18 at 15:58
You need to rotate first around your new $z$ axis by $-phi$. That way your $x'$ axis rotates first to $x$.
– Andrei
Nov 19 '18 at 16:57
You need to rotate first around your new $z$ axis by $-phi$. That way your $x'$ axis rotates first to $x$.
– Andrei
Nov 19 '18 at 16:57
I see, thank you a lot!
– Alicia
Nov 19 '18 at 17:25
I see, thank you a lot!
– Alicia
Nov 19 '18 at 17:25
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004492%2frotation-of-spherical-coordinate-system%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown