$1+frac {1}{4}(1+frac {1}{4}) +frac {1}{9}(1+frac {1}{4} +frac {1}{9})+…$











up vote
7
down vote

favorite
3












Show that $$1+frac {1}{4} bigg(1+frac {1}{4}bigg) +frac {1}{9} bigg(1+frac {1}{4} +frac {1}{9}bigg)+.....$$



converges.



Can you find the exact value of the sum.



My effort:



I have proved the convergence with comparing to $$bigg(sum _1^infty frac {1}{n^2}bigg)^2$$



I have not figure out the exact sum.



Any suggestions??










share|cite|improve this question
























  • The sum is equal to $sum_nfrac{lceil d(n)/2rceil}{n^2}$, if this helps.
    – ajotatxe
    Nov 15 at 16:19












  • According to Mathematica, $sum _{n=1}^{infty } frac{sum _{i=1}^n frac{1}{i^2}}{n^2}={7pi^4over360}$. Maybe this gives you an idea of how to derive the sum.
    – Steve Kass
    Nov 15 at 16:26










  • @SteveKass It should be related to $zeta(4)$
    – ajotatxe
    Nov 15 at 16:28










  • @SteveKass Thanks for the comment, yes sometimes the answer helps to figure out a solution.
    – Mohammad Riazi-Kermani
    Nov 15 at 16:28















up vote
7
down vote

favorite
3












Show that $$1+frac {1}{4} bigg(1+frac {1}{4}bigg) +frac {1}{9} bigg(1+frac {1}{4} +frac {1}{9}bigg)+.....$$



converges.



Can you find the exact value of the sum.



My effort:



I have proved the convergence with comparing to $$bigg(sum _1^infty frac {1}{n^2}bigg)^2$$



I have not figure out the exact sum.



Any suggestions??










share|cite|improve this question
























  • The sum is equal to $sum_nfrac{lceil d(n)/2rceil}{n^2}$, if this helps.
    – ajotatxe
    Nov 15 at 16:19












  • According to Mathematica, $sum _{n=1}^{infty } frac{sum _{i=1}^n frac{1}{i^2}}{n^2}={7pi^4over360}$. Maybe this gives you an idea of how to derive the sum.
    – Steve Kass
    Nov 15 at 16:26










  • @SteveKass It should be related to $zeta(4)$
    – ajotatxe
    Nov 15 at 16:28










  • @SteveKass Thanks for the comment, yes sometimes the answer helps to figure out a solution.
    – Mohammad Riazi-Kermani
    Nov 15 at 16:28













up vote
7
down vote

favorite
3









up vote
7
down vote

favorite
3






3





Show that $$1+frac {1}{4} bigg(1+frac {1}{4}bigg) +frac {1}{9} bigg(1+frac {1}{4} +frac {1}{9}bigg)+.....$$



converges.



Can you find the exact value of the sum.



My effort:



I have proved the convergence with comparing to $$bigg(sum _1^infty frac {1}{n^2}bigg)^2$$



I have not figure out the exact sum.



Any suggestions??










share|cite|improve this question















Show that $$1+frac {1}{4} bigg(1+frac {1}{4}bigg) +frac {1}{9} bigg(1+frac {1}{4} +frac {1}{9}bigg)+.....$$



converges.



Can you find the exact value of the sum.



My effort:



I have proved the convergence with comparing to $$bigg(sum _1^infty frac {1}{n^2}bigg)^2$$



I have not figure out the exact sum.



Any suggestions??







calculus sequences-and-series convergence






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 15 at 16:14









Rebellos

11.5k21040




11.5k21040










asked Nov 15 at 16:11









Mohammad Riazi-Kermani

40.2k41958




40.2k41958












  • The sum is equal to $sum_nfrac{lceil d(n)/2rceil}{n^2}$, if this helps.
    – ajotatxe
    Nov 15 at 16:19












  • According to Mathematica, $sum _{n=1}^{infty } frac{sum _{i=1}^n frac{1}{i^2}}{n^2}={7pi^4over360}$. Maybe this gives you an idea of how to derive the sum.
    – Steve Kass
    Nov 15 at 16:26










  • @SteveKass It should be related to $zeta(4)$
    – ajotatxe
    Nov 15 at 16:28










  • @SteveKass Thanks for the comment, yes sometimes the answer helps to figure out a solution.
    – Mohammad Riazi-Kermani
    Nov 15 at 16:28


















  • The sum is equal to $sum_nfrac{lceil d(n)/2rceil}{n^2}$, if this helps.
    – ajotatxe
    Nov 15 at 16:19












  • According to Mathematica, $sum _{n=1}^{infty } frac{sum _{i=1}^n frac{1}{i^2}}{n^2}={7pi^4over360}$. Maybe this gives you an idea of how to derive the sum.
    – Steve Kass
    Nov 15 at 16:26










  • @SteveKass It should be related to $zeta(4)$
    – ajotatxe
    Nov 15 at 16:28










  • @SteveKass Thanks for the comment, yes sometimes the answer helps to figure out a solution.
    – Mohammad Riazi-Kermani
    Nov 15 at 16:28
















The sum is equal to $sum_nfrac{lceil d(n)/2rceil}{n^2}$, if this helps.
– ajotatxe
Nov 15 at 16:19






The sum is equal to $sum_nfrac{lceil d(n)/2rceil}{n^2}$, if this helps.
– ajotatxe
Nov 15 at 16:19














According to Mathematica, $sum _{n=1}^{infty } frac{sum _{i=1}^n frac{1}{i^2}}{n^2}={7pi^4over360}$. Maybe this gives you an idea of how to derive the sum.
– Steve Kass
Nov 15 at 16:26




According to Mathematica, $sum _{n=1}^{infty } frac{sum _{i=1}^n frac{1}{i^2}}{n^2}={7pi^4over360}$. Maybe this gives you an idea of how to derive the sum.
– Steve Kass
Nov 15 at 16:26












@SteveKass It should be related to $zeta(4)$
– ajotatxe
Nov 15 at 16:28




@SteveKass It should be related to $zeta(4)$
– ajotatxe
Nov 15 at 16:28












@SteveKass Thanks for the comment, yes sometimes the answer helps to figure out a solution.
– Mohammad Riazi-Kermani
Nov 15 at 16:28




@SteveKass Thanks for the comment, yes sometimes the answer helps to figure out a solution.
– Mohammad Riazi-Kermani
Nov 15 at 16:28










2 Answers
2






active

oldest

votes

















up vote
6
down vote



accepted










$$
2S = sum_{ileq j} frac{1}{i^{2}j^{2}} + sum_{igeq j} frac{1}{i^{2}j^{2}} = left(sum_{ngeq 1}frac{1}{n^{2}}right)^{2} + sum_{ngeq 1}frac{1}{n^{4}} = frac{pi^{4}}{36} + frac{pi^{4}}{90}
$$






share|cite|improve this answer

















  • 1




    @Seewood Lee Good answer, thanks.
    – Mohammad Riazi-Kermani
    Nov 15 at 16:32






  • 1




    We can generalize the result to $$sum_{ile j}frac{1}{i^r j^r}=frac12left(zeta(r)^2+zeta(2r)right).$$
    – Tianlalu
    Nov 15 at 16:43


















up vote
2
down vote













Suppose that $sum_{i=0}^infty a_i$ is an absolutely convergent series. Then (where $i$ and $j$ range over the nonnegative integers)



$$2sum_{i<=j} a_ia_j=\
2sum_{i<j} a_ia_j+2sum_{i=j} a_ia_j=\
sum_{i<j} a_ia_j+sum_{i>j} a_ia_j+color{green}{2sum_{i=j} a_ia_j}=\
left(sum_{i<j} a_ia_j+color{green}{sum_{i=j} a_ia_j}+sum_{i>j} a_ia_jright)+color{green}{sum_{i=j} a_ia_j}=\
color{red}{{sum_{i,j} a_ia_j}}+color{blue}{sum_{i=j} a_ia_j}=\
color{red}{left(sum_{i} a_iright)^2}+color{blue}{sum_{i} (a_i)^2}.$$



The question here is answered by this identity for $displaystyle a_i={1over i^2}$.






share|cite|improve this answer





















  • Very beautiful, thank for the answer..
    – Mohammad Riazi-Kermani
    Nov 15 at 21:33













Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














 

draft saved


draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999887%2f1-frac-141-frac-14-frac-191-frac-14-frac-19%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
6
down vote



accepted










$$
2S = sum_{ileq j} frac{1}{i^{2}j^{2}} + sum_{igeq j} frac{1}{i^{2}j^{2}} = left(sum_{ngeq 1}frac{1}{n^{2}}right)^{2} + sum_{ngeq 1}frac{1}{n^{4}} = frac{pi^{4}}{36} + frac{pi^{4}}{90}
$$






share|cite|improve this answer

















  • 1




    @Seewood Lee Good answer, thanks.
    – Mohammad Riazi-Kermani
    Nov 15 at 16:32






  • 1




    We can generalize the result to $$sum_{ile j}frac{1}{i^r j^r}=frac12left(zeta(r)^2+zeta(2r)right).$$
    – Tianlalu
    Nov 15 at 16:43















up vote
6
down vote



accepted










$$
2S = sum_{ileq j} frac{1}{i^{2}j^{2}} + sum_{igeq j} frac{1}{i^{2}j^{2}} = left(sum_{ngeq 1}frac{1}{n^{2}}right)^{2} + sum_{ngeq 1}frac{1}{n^{4}} = frac{pi^{4}}{36} + frac{pi^{4}}{90}
$$






share|cite|improve this answer

















  • 1




    @Seewood Lee Good answer, thanks.
    – Mohammad Riazi-Kermani
    Nov 15 at 16:32






  • 1




    We can generalize the result to $$sum_{ile j}frac{1}{i^r j^r}=frac12left(zeta(r)^2+zeta(2r)right).$$
    – Tianlalu
    Nov 15 at 16:43













up vote
6
down vote



accepted







up vote
6
down vote



accepted






$$
2S = sum_{ileq j} frac{1}{i^{2}j^{2}} + sum_{igeq j} frac{1}{i^{2}j^{2}} = left(sum_{ngeq 1}frac{1}{n^{2}}right)^{2} + sum_{ngeq 1}frac{1}{n^{4}} = frac{pi^{4}}{36} + frac{pi^{4}}{90}
$$






share|cite|improve this answer












$$
2S = sum_{ileq j} frac{1}{i^{2}j^{2}} + sum_{igeq j} frac{1}{i^{2}j^{2}} = left(sum_{ngeq 1}frac{1}{n^{2}}right)^{2} + sum_{ngeq 1}frac{1}{n^{4}} = frac{pi^{4}}{36} + frac{pi^{4}}{90}
$$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Nov 15 at 16:28









Seewoo Lee

5,756825




5,756825








  • 1




    @Seewood Lee Good answer, thanks.
    – Mohammad Riazi-Kermani
    Nov 15 at 16:32






  • 1




    We can generalize the result to $$sum_{ile j}frac{1}{i^r j^r}=frac12left(zeta(r)^2+zeta(2r)right).$$
    – Tianlalu
    Nov 15 at 16:43














  • 1




    @Seewood Lee Good answer, thanks.
    – Mohammad Riazi-Kermani
    Nov 15 at 16:32






  • 1




    We can generalize the result to $$sum_{ile j}frac{1}{i^r j^r}=frac12left(zeta(r)^2+zeta(2r)right).$$
    – Tianlalu
    Nov 15 at 16:43








1




1




@Seewood Lee Good answer, thanks.
– Mohammad Riazi-Kermani
Nov 15 at 16:32




@Seewood Lee Good answer, thanks.
– Mohammad Riazi-Kermani
Nov 15 at 16:32




1




1




We can generalize the result to $$sum_{ile j}frac{1}{i^r j^r}=frac12left(zeta(r)^2+zeta(2r)right).$$
– Tianlalu
Nov 15 at 16:43




We can generalize the result to $$sum_{ile j}frac{1}{i^r j^r}=frac12left(zeta(r)^2+zeta(2r)right).$$
– Tianlalu
Nov 15 at 16:43










up vote
2
down vote













Suppose that $sum_{i=0}^infty a_i$ is an absolutely convergent series. Then (where $i$ and $j$ range over the nonnegative integers)



$$2sum_{i<=j} a_ia_j=\
2sum_{i<j} a_ia_j+2sum_{i=j} a_ia_j=\
sum_{i<j} a_ia_j+sum_{i>j} a_ia_j+color{green}{2sum_{i=j} a_ia_j}=\
left(sum_{i<j} a_ia_j+color{green}{sum_{i=j} a_ia_j}+sum_{i>j} a_ia_jright)+color{green}{sum_{i=j} a_ia_j}=\
color{red}{{sum_{i,j} a_ia_j}}+color{blue}{sum_{i=j} a_ia_j}=\
color{red}{left(sum_{i} a_iright)^2}+color{blue}{sum_{i} (a_i)^2}.$$



The question here is answered by this identity for $displaystyle a_i={1over i^2}$.






share|cite|improve this answer





















  • Very beautiful, thank for the answer..
    – Mohammad Riazi-Kermani
    Nov 15 at 21:33

















up vote
2
down vote













Suppose that $sum_{i=0}^infty a_i$ is an absolutely convergent series. Then (where $i$ and $j$ range over the nonnegative integers)



$$2sum_{i<=j} a_ia_j=\
2sum_{i<j} a_ia_j+2sum_{i=j} a_ia_j=\
sum_{i<j} a_ia_j+sum_{i>j} a_ia_j+color{green}{2sum_{i=j} a_ia_j}=\
left(sum_{i<j} a_ia_j+color{green}{sum_{i=j} a_ia_j}+sum_{i>j} a_ia_jright)+color{green}{sum_{i=j} a_ia_j}=\
color{red}{{sum_{i,j} a_ia_j}}+color{blue}{sum_{i=j} a_ia_j}=\
color{red}{left(sum_{i} a_iright)^2}+color{blue}{sum_{i} (a_i)^2}.$$



The question here is answered by this identity for $displaystyle a_i={1over i^2}$.






share|cite|improve this answer





















  • Very beautiful, thank for the answer..
    – Mohammad Riazi-Kermani
    Nov 15 at 21:33















up vote
2
down vote










up vote
2
down vote









Suppose that $sum_{i=0}^infty a_i$ is an absolutely convergent series. Then (where $i$ and $j$ range over the nonnegative integers)



$$2sum_{i<=j} a_ia_j=\
2sum_{i<j} a_ia_j+2sum_{i=j} a_ia_j=\
sum_{i<j} a_ia_j+sum_{i>j} a_ia_j+color{green}{2sum_{i=j} a_ia_j}=\
left(sum_{i<j} a_ia_j+color{green}{sum_{i=j} a_ia_j}+sum_{i>j} a_ia_jright)+color{green}{sum_{i=j} a_ia_j}=\
color{red}{{sum_{i,j} a_ia_j}}+color{blue}{sum_{i=j} a_ia_j}=\
color{red}{left(sum_{i} a_iright)^2}+color{blue}{sum_{i} (a_i)^2}.$$



The question here is answered by this identity for $displaystyle a_i={1over i^2}$.






share|cite|improve this answer












Suppose that $sum_{i=0}^infty a_i$ is an absolutely convergent series. Then (where $i$ and $j$ range over the nonnegative integers)



$$2sum_{i<=j} a_ia_j=\
2sum_{i<j} a_ia_j+2sum_{i=j} a_ia_j=\
sum_{i<j} a_ia_j+sum_{i>j} a_ia_j+color{green}{2sum_{i=j} a_ia_j}=\
left(sum_{i<j} a_ia_j+color{green}{sum_{i=j} a_ia_j}+sum_{i>j} a_ia_jright)+color{green}{sum_{i=j} a_ia_j}=\
color{red}{{sum_{i,j} a_ia_j}}+color{blue}{sum_{i=j} a_ia_j}=\
color{red}{left(sum_{i} a_iright)^2}+color{blue}{sum_{i} (a_i)^2}.$$



The question here is answered by this identity for $displaystyle a_i={1over i^2}$.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Nov 15 at 21:22









Steve Kass

10.8k11429




10.8k11429












  • Very beautiful, thank for the answer..
    – Mohammad Riazi-Kermani
    Nov 15 at 21:33




















  • Very beautiful, thank for the answer..
    – Mohammad Riazi-Kermani
    Nov 15 at 21:33


















Very beautiful, thank for the answer..
– Mohammad Riazi-Kermani
Nov 15 at 21:33






Very beautiful, thank for the answer..
– Mohammad Riazi-Kermani
Nov 15 at 21:33




















 

draft saved


draft discarded



















































 


draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999887%2f1-frac-141-frac-14-frac-191-frac-14-frac-19%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

AnyDesk - Fatal Program Failure

How to calibrate 16:9 built-in touch-screen to a 4:3 resolution?

QoS: MAC-Priority for clients behind a repeater