inverse Laplace of hypergeometric confluent function











up vote
1
down vote

favorite












In my calculations, we must reverse the Laplace transform of the hypergeometric confluent function. In the (integrals and series, inverse Laplace transform)A.P. Prudnikov's book , the inverse Laplace function is subtracted from the hypergeometric function as follows.
$$L^{-1}[frac{Γ(p+a)}{Γ(p+b)}1F1(p+a,p+b,w)=frac{(1-e^{-x})^{b-a-1}}{Γ(b-a)}exp(we^{-x}-ax)]$$
The function that I have to get from Laplace's reverse is as follows.
$$L^{-1}[frac{Γ(p+a)}{Γ(2p+b)}1F1(p+a,2p+b,w)$$
To use the formula in mentioned book, how should I convert this function to the hypergeometric function shown in this book?

In fact, I want to get the inverse Laplace transform from the following statement
$$L^{-1}[1F1(as+b,2as+1,x)]$$
we have
$$sum_{n=0}^inftyfrac{x^{n}}{n!}L^{-1}(frac{(as+b)_{n}}{(2as+1)_{n}})=sum_{n=0}^inftyfrac{x^{n}}{n!}L^{-1}(frac{(as+b)(as+b+1)(as+b+2)...(as+b+n-1)}{(2as+1)(2as+2)(2as+3)...(2as+n)})$$ We have the following poles$s_{1}=frac{-1}{2a},s_{2}=frac{-1}{a},...,s_{n}=frac{-n}{2a}$
$$L^{-1}(frac{(as+b)(as+b+1)(as+b+2)...(as+b+n-1)}{(2as+1)(2as+2)(2as+3)...(2as+n)})=frac{1}{2a}(frac{(frac{-1}{2}+b)(frac{1}{2}+b)...(-frac{3}{2}+b+n)}{1*2*...(n-1)}e^{-frac{t}{2a}}+frac{(b-1)(b)...(-2+b+n)}{(-1)*(1)*(2)*(3)...(n-2)}e^{-frac{2t}{2a}}+frac{(frac{-3}{2}+b)(frac{-1}{2}+b)...(-frac{3}{2}+b+n-1)}{(-2)*(-1)*(1)*(2)*...(n-3)}e^{-frac{3t}{2a}}+...+frac{(frac{-n}{2}+b)(frac{-n}{2}+b+1)...(-frac{n}{2}+b-1)}{(-n+1)*(-n+2)*...(-2)*(-1)}e^{-frac{nt}{2a}})$$
$$L^{-1}[1F1(as+b,2as+1,x)]=sum_{n=0}^inftyfrac{x^{n}}{n!}[frac{1}{2a}(frac{(frac{-1}{2}+b)(frac{1}{2}+b)...(-frac{3}{2}+b+n)}{1*2*...(n-1)}e^{-frac{t}{2a}}+frac{(b-1)(b)...(-2+b+n)}{(-1)*(1)*(2)*(3)...(n-2)}e^{-frac{2t}{2a}}+frac{(frac{-3}{2}+b)(frac{-1}{2}+b)...(-frac{3}{2}+b+n-1)}{(-2)*(-1)*(1)*(2)*...(n-3)}e^{-frac{3t}{2a}}+...+frac{(frac{-n}{2}+b)(frac{-n}{2}+b+1)...(-frac{n}{2}+b-1)}{(-n+1)*(-n+2)*...(-2)*(-1)}e^{-frac{nt}{2a}})]=sum_{n=0}^inftyfrac{x^{n}}{n!}[frac{1}{2a}frac{(-frac{1}{2}+b)_{n}}{(n-1)!}e^{-frac{t}{2a}}-frac{(-1+b)_{n}}{(n-2)!}e^{-frac{2t}{2a}}+frac{1}{2}frac{(-frac{3}{2}+b)_{n}}{(n-3)!}e^{-frac{3t}{2a}}+...+frac{(-frac{n}{2}+b)_{n}}{(-1)^{n-1}???}e^{-frac{nt}{2a}}]$$Is my solution correct? Is there a closed solution?What should I place on the question mark?
I also used the other method as follows:
$$L^{-1}[1F1(as+b,2as+1,x)]=sum_{n=0}^inftyfrac{x^{n}}{n!}(L^{-1}{frac{Γ(as+b+n)Γ(2as+1)}{Γ(as+b)Γ(2as+1+n)}})$$there is two poles $s_{1}=frac{-k-b-n}{a}$ and $s_{2}=frac{-k-1}{2a}$ thus, we have
$$sum_{n=0}^inftyfrac{x^{n}}{n!}(sum_{k=0}^inftyfrac{(-1)^{k}Γ(-2k-2b-2n+1)}{k!Γ(-k-n)Γ(-2k-2b-n+1)}e^{(frac{-k-b-n}{a})t}+frac{(-1)^{k}Γ(frac{-k-1}{2}+b+n)}{k!Γ(frac{-k-1}{2}+b)Γ(-k+n)}e^{(frac{-k-1}{2a})t})$$
What do I do for $Γ(-k+n)$ and $Γ(-k-n)$ in the denominator?gamma function for the negative integer numbers is diverge.
 










share|cite|improve this question




















  • 1




    No one can help me?
    – Dana
    Nov 18 at 6:48












  • Please guide me.
    – Dana
    Nov 19 at 7:00










  • Which function are you computing the inverse transform of? The absolute value of $Gamma(p + a)/Gamma(2 p + b) ,{_1F_1}(p + a; 2 p + b; w)$ on the line $p = gamma + i sigma$ grows as $$2^{1/2 - b - 2 gamma} (sigma^2 + gamma^2)^{(a - b - gamma)/2} exp left( sigma arg p + gamma + frac w 2 right),$$ there is exponential divergence when $arg p$ approaches $pm pi/2$. ${_1F_1}(a s + b; 2 a s + 1; x)$ is $e^{x/2} + O(1/|s|)$, the inverse transform will contain the term $e^{x/2} delta(t)$.
    – Maxim
    Nov 25 at 19:24












  • @Maxim: Is my solution correct? Is there a closed solution for the Laplace inverse of the hypergeometric function?
    – Dana
    Nov 26 at 7:45












  • I'm saying that neither function has an inverse transform in terms of ordinary functions (ordinary as opposed to generalized functions).
    – Maxim
    Nov 26 at 17:12

















up vote
1
down vote

favorite












In my calculations, we must reverse the Laplace transform of the hypergeometric confluent function. In the (integrals and series, inverse Laplace transform)A.P. Prudnikov's book , the inverse Laplace function is subtracted from the hypergeometric function as follows.
$$L^{-1}[frac{Γ(p+a)}{Γ(p+b)}1F1(p+a,p+b,w)=frac{(1-e^{-x})^{b-a-1}}{Γ(b-a)}exp(we^{-x}-ax)]$$
The function that I have to get from Laplace's reverse is as follows.
$$L^{-1}[frac{Γ(p+a)}{Γ(2p+b)}1F1(p+a,2p+b,w)$$
To use the formula in mentioned book, how should I convert this function to the hypergeometric function shown in this book?

In fact, I want to get the inverse Laplace transform from the following statement
$$L^{-1}[1F1(as+b,2as+1,x)]$$
we have
$$sum_{n=0}^inftyfrac{x^{n}}{n!}L^{-1}(frac{(as+b)_{n}}{(2as+1)_{n}})=sum_{n=0}^inftyfrac{x^{n}}{n!}L^{-1}(frac{(as+b)(as+b+1)(as+b+2)...(as+b+n-1)}{(2as+1)(2as+2)(2as+3)...(2as+n)})$$ We have the following poles$s_{1}=frac{-1}{2a},s_{2}=frac{-1}{a},...,s_{n}=frac{-n}{2a}$
$$L^{-1}(frac{(as+b)(as+b+1)(as+b+2)...(as+b+n-1)}{(2as+1)(2as+2)(2as+3)...(2as+n)})=frac{1}{2a}(frac{(frac{-1}{2}+b)(frac{1}{2}+b)...(-frac{3}{2}+b+n)}{1*2*...(n-1)}e^{-frac{t}{2a}}+frac{(b-1)(b)...(-2+b+n)}{(-1)*(1)*(2)*(3)...(n-2)}e^{-frac{2t}{2a}}+frac{(frac{-3}{2}+b)(frac{-1}{2}+b)...(-frac{3}{2}+b+n-1)}{(-2)*(-1)*(1)*(2)*...(n-3)}e^{-frac{3t}{2a}}+...+frac{(frac{-n}{2}+b)(frac{-n}{2}+b+1)...(-frac{n}{2}+b-1)}{(-n+1)*(-n+2)*...(-2)*(-1)}e^{-frac{nt}{2a}})$$
$$L^{-1}[1F1(as+b,2as+1,x)]=sum_{n=0}^inftyfrac{x^{n}}{n!}[frac{1}{2a}(frac{(frac{-1}{2}+b)(frac{1}{2}+b)...(-frac{3}{2}+b+n)}{1*2*...(n-1)}e^{-frac{t}{2a}}+frac{(b-1)(b)...(-2+b+n)}{(-1)*(1)*(2)*(3)...(n-2)}e^{-frac{2t}{2a}}+frac{(frac{-3}{2}+b)(frac{-1}{2}+b)...(-frac{3}{2}+b+n-1)}{(-2)*(-1)*(1)*(2)*...(n-3)}e^{-frac{3t}{2a}}+...+frac{(frac{-n}{2}+b)(frac{-n}{2}+b+1)...(-frac{n}{2}+b-1)}{(-n+1)*(-n+2)*...(-2)*(-1)}e^{-frac{nt}{2a}})]=sum_{n=0}^inftyfrac{x^{n}}{n!}[frac{1}{2a}frac{(-frac{1}{2}+b)_{n}}{(n-1)!}e^{-frac{t}{2a}}-frac{(-1+b)_{n}}{(n-2)!}e^{-frac{2t}{2a}}+frac{1}{2}frac{(-frac{3}{2}+b)_{n}}{(n-3)!}e^{-frac{3t}{2a}}+...+frac{(-frac{n}{2}+b)_{n}}{(-1)^{n-1}???}e^{-frac{nt}{2a}}]$$Is my solution correct? Is there a closed solution?What should I place on the question mark?
I also used the other method as follows:
$$L^{-1}[1F1(as+b,2as+1,x)]=sum_{n=0}^inftyfrac{x^{n}}{n!}(L^{-1}{frac{Γ(as+b+n)Γ(2as+1)}{Γ(as+b)Γ(2as+1+n)}})$$there is two poles $s_{1}=frac{-k-b-n}{a}$ and $s_{2}=frac{-k-1}{2a}$ thus, we have
$$sum_{n=0}^inftyfrac{x^{n}}{n!}(sum_{k=0}^inftyfrac{(-1)^{k}Γ(-2k-2b-2n+1)}{k!Γ(-k-n)Γ(-2k-2b-n+1)}e^{(frac{-k-b-n}{a})t}+frac{(-1)^{k}Γ(frac{-k-1}{2}+b+n)}{k!Γ(frac{-k-1}{2}+b)Γ(-k+n)}e^{(frac{-k-1}{2a})t})$$
What do I do for $Γ(-k+n)$ and $Γ(-k-n)$ in the denominator?gamma function for the negative integer numbers is diverge.
 










share|cite|improve this question




















  • 1




    No one can help me?
    – Dana
    Nov 18 at 6:48












  • Please guide me.
    – Dana
    Nov 19 at 7:00










  • Which function are you computing the inverse transform of? The absolute value of $Gamma(p + a)/Gamma(2 p + b) ,{_1F_1}(p + a; 2 p + b; w)$ on the line $p = gamma + i sigma$ grows as $$2^{1/2 - b - 2 gamma} (sigma^2 + gamma^2)^{(a - b - gamma)/2} exp left( sigma arg p + gamma + frac w 2 right),$$ there is exponential divergence when $arg p$ approaches $pm pi/2$. ${_1F_1}(a s + b; 2 a s + 1; x)$ is $e^{x/2} + O(1/|s|)$, the inverse transform will contain the term $e^{x/2} delta(t)$.
    – Maxim
    Nov 25 at 19:24












  • @Maxim: Is my solution correct? Is there a closed solution for the Laplace inverse of the hypergeometric function?
    – Dana
    Nov 26 at 7:45












  • I'm saying that neither function has an inverse transform in terms of ordinary functions (ordinary as opposed to generalized functions).
    – Maxim
    Nov 26 at 17:12















up vote
1
down vote

favorite









up vote
1
down vote

favorite











In my calculations, we must reverse the Laplace transform of the hypergeometric confluent function. In the (integrals and series, inverse Laplace transform)A.P. Prudnikov's book , the inverse Laplace function is subtracted from the hypergeometric function as follows.
$$L^{-1}[frac{Γ(p+a)}{Γ(p+b)}1F1(p+a,p+b,w)=frac{(1-e^{-x})^{b-a-1}}{Γ(b-a)}exp(we^{-x}-ax)]$$
The function that I have to get from Laplace's reverse is as follows.
$$L^{-1}[frac{Γ(p+a)}{Γ(2p+b)}1F1(p+a,2p+b,w)$$
To use the formula in mentioned book, how should I convert this function to the hypergeometric function shown in this book?

In fact, I want to get the inverse Laplace transform from the following statement
$$L^{-1}[1F1(as+b,2as+1,x)]$$
we have
$$sum_{n=0}^inftyfrac{x^{n}}{n!}L^{-1}(frac{(as+b)_{n}}{(2as+1)_{n}})=sum_{n=0}^inftyfrac{x^{n}}{n!}L^{-1}(frac{(as+b)(as+b+1)(as+b+2)...(as+b+n-1)}{(2as+1)(2as+2)(2as+3)...(2as+n)})$$ We have the following poles$s_{1}=frac{-1}{2a},s_{2}=frac{-1}{a},...,s_{n}=frac{-n}{2a}$
$$L^{-1}(frac{(as+b)(as+b+1)(as+b+2)...(as+b+n-1)}{(2as+1)(2as+2)(2as+3)...(2as+n)})=frac{1}{2a}(frac{(frac{-1}{2}+b)(frac{1}{2}+b)...(-frac{3}{2}+b+n)}{1*2*...(n-1)}e^{-frac{t}{2a}}+frac{(b-1)(b)...(-2+b+n)}{(-1)*(1)*(2)*(3)...(n-2)}e^{-frac{2t}{2a}}+frac{(frac{-3}{2}+b)(frac{-1}{2}+b)...(-frac{3}{2}+b+n-1)}{(-2)*(-1)*(1)*(2)*...(n-3)}e^{-frac{3t}{2a}}+...+frac{(frac{-n}{2}+b)(frac{-n}{2}+b+1)...(-frac{n}{2}+b-1)}{(-n+1)*(-n+2)*...(-2)*(-1)}e^{-frac{nt}{2a}})$$
$$L^{-1}[1F1(as+b,2as+1,x)]=sum_{n=0}^inftyfrac{x^{n}}{n!}[frac{1}{2a}(frac{(frac{-1}{2}+b)(frac{1}{2}+b)...(-frac{3}{2}+b+n)}{1*2*...(n-1)}e^{-frac{t}{2a}}+frac{(b-1)(b)...(-2+b+n)}{(-1)*(1)*(2)*(3)...(n-2)}e^{-frac{2t}{2a}}+frac{(frac{-3}{2}+b)(frac{-1}{2}+b)...(-frac{3}{2}+b+n-1)}{(-2)*(-1)*(1)*(2)*...(n-3)}e^{-frac{3t}{2a}}+...+frac{(frac{-n}{2}+b)(frac{-n}{2}+b+1)...(-frac{n}{2}+b-1)}{(-n+1)*(-n+2)*...(-2)*(-1)}e^{-frac{nt}{2a}})]=sum_{n=0}^inftyfrac{x^{n}}{n!}[frac{1}{2a}frac{(-frac{1}{2}+b)_{n}}{(n-1)!}e^{-frac{t}{2a}}-frac{(-1+b)_{n}}{(n-2)!}e^{-frac{2t}{2a}}+frac{1}{2}frac{(-frac{3}{2}+b)_{n}}{(n-3)!}e^{-frac{3t}{2a}}+...+frac{(-frac{n}{2}+b)_{n}}{(-1)^{n-1}???}e^{-frac{nt}{2a}}]$$Is my solution correct? Is there a closed solution?What should I place on the question mark?
I also used the other method as follows:
$$L^{-1}[1F1(as+b,2as+1,x)]=sum_{n=0}^inftyfrac{x^{n}}{n!}(L^{-1}{frac{Γ(as+b+n)Γ(2as+1)}{Γ(as+b)Γ(2as+1+n)}})$$there is two poles $s_{1}=frac{-k-b-n}{a}$ and $s_{2}=frac{-k-1}{2a}$ thus, we have
$$sum_{n=0}^inftyfrac{x^{n}}{n!}(sum_{k=0}^inftyfrac{(-1)^{k}Γ(-2k-2b-2n+1)}{k!Γ(-k-n)Γ(-2k-2b-n+1)}e^{(frac{-k-b-n}{a})t}+frac{(-1)^{k}Γ(frac{-k-1}{2}+b+n)}{k!Γ(frac{-k-1}{2}+b)Γ(-k+n)}e^{(frac{-k-1}{2a})t})$$
What do I do for $Γ(-k+n)$ and $Γ(-k-n)$ in the denominator?gamma function for the negative integer numbers is diverge.
 










share|cite|improve this question















In my calculations, we must reverse the Laplace transform of the hypergeometric confluent function. In the (integrals and series, inverse Laplace transform)A.P. Prudnikov's book , the inverse Laplace function is subtracted from the hypergeometric function as follows.
$$L^{-1}[frac{Γ(p+a)}{Γ(p+b)}1F1(p+a,p+b,w)=frac{(1-e^{-x})^{b-a-1}}{Γ(b-a)}exp(we^{-x}-ax)]$$
The function that I have to get from Laplace's reverse is as follows.
$$L^{-1}[frac{Γ(p+a)}{Γ(2p+b)}1F1(p+a,2p+b,w)$$
To use the formula in mentioned book, how should I convert this function to the hypergeometric function shown in this book?

In fact, I want to get the inverse Laplace transform from the following statement
$$L^{-1}[1F1(as+b,2as+1,x)]$$
we have
$$sum_{n=0}^inftyfrac{x^{n}}{n!}L^{-1}(frac{(as+b)_{n}}{(2as+1)_{n}})=sum_{n=0}^inftyfrac{x^{n}}{n!}L^{-1}(frac{(as+b)(as+b+1)(as+b+2)...(as+b+n-1)}{(2as+1)(2as+2)(2as+3)...(2as+n)})$$ We have the following poles$s_{1}=frac{-1}{2a},s_{2}=frac{-1}{a},...,s_{n}=frac{-n}{2a}$
$$L^{-1}(frac{(as+b)(as+b+1)(as+b+2)...(as+b+n-1)}{(2as+1)(2as+2)(2as+3)...(2as+n)})=frac{1}{2a}(frac{(frac{-1}{2}+b)(frac{1}{2}+b)...(-frac{3}{2}+b+n)}{1*2*...(n-1)}e^{-frac{t}{2a}}+frac{(b-1)(b)...(-2+b+n)}{(-1)*(1)*(2)*(3)...(n-2)}e^{-frac{2t}{2a}}+frac{(frac{-3}{2}+b)(frac{-1}{2}+b)...(-frac{3}{2}+b+n-1)}{(-2)*(-1)*(1)*(2)*...(n-3)}e^{-frac{3t}{2a}}+...+frac{(frac{-n}{2}+b)(frac{-n}{2}+b+1)...(-frac{n}{2}+b-1)}{(-n+1)*(-n+2)*...(-2)*(-1)}e^{-frac{nt}{2a}})$$
$$L^{-1}[1F1(as+b,2as+1,x)]=sum_{n=0}^inftyfrac{x^{n}}{n!}[frac{1}{2a}(frac{(frac{-1}{2}+b)(frac{1}{2}+b)...(-frac{3}{2}+b+n)}{1*2*...(n-1)}e^{-frac{t}{2a}}+frac{(b-1)(b)...(-2+b+n)}{(-1)*(1)*(2)*(3)...(n-2)}e^{-frac{2t}{2a}}+frac{(frac{-3}{2}+b)(frac{-1}{2}+b)...(-frac{3}{2}+b+n-1)}{(-2)*(-1)*(1)*(2)*...(n-3)}e^{-frac{3t}{2a}}+...+frac{(frac{-n}{2}+b)(frac{-n}{2}+b+1)...(-frac{n}{2}+b-1)}{(-n+1)*(-n+2)*...(-2)*(-1)}e^{-frac{nt}{2a}})]=sum_{n=0}^inftyfrac{x^{n}}{n!}[frac{1}{2a}frac{(-frac{1}{2}+b)_{n}}{(n-1)!}e^{-frac{t}{2a}}-frac{(-1+b)_{n}}{(n-2)!}e^{-frac{2t}{2a}}+frac{1}{2}frac{(-frac{3}{2}+b)_{n}}{(n-3)!}e^{-frac{3t}{2a}}+...+frac{(-frac{n}{2}+b)_{n}}{(-1)^{n-1}???}e^{-frac{nt}{2a}}]$$Is my solution correct? Is there a closed solution?What should I place on the question mark?
I also used the other method as follows:
$$L^{-1}[1F1(as+b,2as+1,x)]=sum_{n=0}^inftyfrac{x^{n}}{n!}(L^{-1}{frac{Γ(as+b+n)Γ(2as+1)}{Γ(as+b)Γ(2as+1+n)}})$$there is two poles $s_{1}=frac{-k-b-n}{a}$ and $s_{2}=frac{-k-1}{2a}$ thus, we have
$$sum_{n=0}^inftyfrac{x^{n}}{n!}(sum_{k=0}^inftyfrac{(-1)^{k}Γ(-2k-2b-2n+1)}{k!Γ(-k-n)Γ(-2k-2b-n+1)}e^{(frac{-k-b-n}{a})t}+frac{(-1)^{k}Γ(frac{-k-1}{2}+b+n)}{k!Γ(frac{-k-1}{2}+b)Γ(-k+n)}e^{(frac{-k-1}{2a})t})$$
What do I do for $Γ(-k+n)$ and $Γ(-k-n)$ in the denominator?gamma function for the negative integer numbers is diverge.
 







hypergeometric-function inverselaplace






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 26 at 11:13

























asked Nov 17 at 12:42









Dana

95




95








  • 1




    No one can help me?
    – Dana
    Nov 18 at 6:48












  • Please guide me.
    – Dana
    Nov 19 at 7:00










  • Which function are you computing the inverse transform of? The absolute value of $Gamma(p + a)/Gamma(2 p + b) ,{_1F_1}(p + a; 2 p + b; w)$ on the line $p = gamma + i sigma$ grows as $$2^{1/2 - b - 2 gamma} (sigma^2 + gamma^2)^{(a - b - gamma)/2} exp left( sigma arg p + gamma + frac w 2 right),$$ there is exponential divergence when $arg p$ approaches $pm pi/2$. ${_1F_1}(a s + b; 2 a s + 1; x)$ is $e^{x/2} + O(1/|s|)$, the inverse transform will contain the term $e^{x/2} delta(t)$.
    – Maxim
    Nov 25 at 19:24












  • @Maxim: Is my solution correct? Is there a closed solution for the Laplace inverse of the hypergeometric function?
    – Dana
    Nov 26 at 7:45












  • I'm saying that neither function has an inverse transform in terms of ordinary functions (ordinary as opposed to generalized functions).
    – Maxim
    Nov 26 at 17:12
















  • 1




    No one can help me?
    – Dana
    Nov 18 at 6:48












  • Please guide me.
    – Dana
    Nov 19 at 7:00










  • Which function are you computing the inverse transform of? The absolute value of $Gamma(p + a)/Gamma(2 p + b) ,{_1F_1}(p + a; 2 p + b; w)$ on the line $p = gamma + i sigma$ grows as $$2^{1/2 - b - 2 gamma} (sigma^2 + gamma^2)^{(a - b - gamma)/2} exp left( sigma arg p + gamma + frac w 2 right),$$ there is exponential divergence when $arg p$ approaches $pm pi/2$. ${_1F_1}(a s + b; 2 a s + 1; x)$ is $e^{x/2} + O(1/|s|)$, the inverse transform will contain the term $e^{x/2} delta(t)$.
    – Maxim
    Nov 25 at 19:24












  • @Maxim: Is my solution correct? Is there a closed solution for the Laplace inverse of the hypergeometric function?
    – Dana
    Nov 26 at 7:45












  • I'm saying that neither function has an inverse transform in terms of ordinary functions (ordinary as opposed to generalized functions).
    – Maxim
    Nov 26 at 17:12










1




1




No one can help me?
– Dana
Nov 18 at 6:48






No one can help me?
– Dana
Nov 18 at 6:48














Please guide me.
– Dana
Nov 19 at 7:00




Please guide me.
– Dana
Nov 19 at 7:00












Which function are you computing the inverse transform of? The absolute value of $Gamma(p + a)/Gamma(2 p + b) ,{_1F_1}(p + a; 2 p + b; w)$ on the line $p = gamma + i sigma$ grows as $$2^{1/2 - b - 2 gamma} (sigma^2 + gamma^2)^{(a - b - gamma)/2} exp left( sigma arg p + gamma + frac w 2 right),$$ there is exponential divergence when $arg p$ approaches $pm pi/2$. ${_1F_1}(a s + b; 2 a s + 1; x)$ is $e^{x/2} + O(1/|s|)$, the inverse transform will contain the term $e^{x/2} delta(t)$.
– Maxim
Nov 25 at 19:24






Which function are you computing the inverse transform of? The absolute value of $Gamma(p + a)/Gamma(2 p + b) ,{_1F_1}(p + a; 2 p + b; w)$ on the line $p = gamma + i sigma$ grows as $$2^{1/2 - b - 2 gamma} (sigma^2 + gamma^2)^{(a - b - gamma)/2} exp left( sigma arg p + gamma + frac w 2 right),$$ there is exponential divergence when $arg p$ approaches $pm pi/2$. ${_1F_1}(a s + b; 2 a s + 1; x)$ is $e^{x/2} + O(1/|s|)$, the inverse transform will contain the term $e^{x/2} delta(t)$.
– Maxim
Nov 25 at 19:24














@Maxim: Is my solution correct? Is there a closed solution for the Laplace inverse of the hypergeometric function?
– Dana
Nov 26 at 7:45






@Maxim: Is my solution correct? Is there a closed solution for the Laplace inverse of the hypergeometric function?
– Dana
Nov 26 at 7:45














I'm saying that neither function has an inverse transform in terms of ordinary functions (ordinary as opposed to generalized functions).
– Maxim
Nov 26 at 17:12






I'm saying that neither function has an inverse transform in terms of ordinary functions (ordinary as opposed to generalized functions).
– Maxim
Nov 26 at 17:12












1 Answer
1






active

oldest

votes

















up vote
0
down vote













Let $a > 0, ,b > 0, ,0 < x < 1$. The Bromwich integral of $F(s) = {_1hspace{-2px}F_1}(a s + b; 2 a s + 1; x) - e^{x/2}$ exists and can be computed by applying the residue theorem. Let $j in mathbb N^0, ,l = (j + 1)/2$, then
$$c_{k, j} = operatorname*{Res}_{s = -l/a}
frac {(a s + b)_k} {(2 a s + 1)_k} frac {x^k} {k!} e^{t s} =
frac {(-1)^j (b - l)_k ,x^k e^{-l t/a}} {2 a k! j! (k - j - 1)!}, \
mathcal L^{-1}[F] =
sum_{k = 0}^infty sum_{j = 0}^{k - 1} c_{k, j} =
sum_{j = 0}^infty sum_{k = j + 1}^infty c_{k, j} = \
frac 1 {2 a} sum_{j = 0}^infty
frac {Gamma(b + l)} {Gamma(b - l)}
frac {(-1)^j x^{j + 1}} {j! (j + 1)!}
{_1hspace{-2px}F_1}(b + l; j + 2; x) e^{-l t/a}, \
mathcal L^{-1}_{s to t} [F(s) + e^{x/2}] =
mathcal L^{-1}_{s to t} [F(s)] + e^{x/2} delta(t).$$






share|cite|improve this answer























  • :I don't understand your answer.
    – Dana
    2 days ago












  • Consider these questions: 1) How can you tell whether you're computing the inverse transform of ${_1hspace{-2px}F_1}(a s + b; 2 a s + 1; x)$ or of ${_1hspace{-2px}F_1}(a s + b; 2 a s + 1; x) - e^{x/2}$? Those two functions have the same poles and the same residues; 2) What is the inverse transform of $1 + 1/s$? Can it be found by evaluating $int_{gamma - i infty}^{gamma + i infty} (1 + 1/s) e^{t s} ds$?
    – Maxim
    2 days ago










  • What does effect ,added phrase $e^{frac{x}{2}}$on the residues theorem????why is added?
    – Dana
    2 days ago












  • Why did you consider a pole?Is not this the hypergeometric function in the numerator composed of two gamma functions that leads to divergence? So you should consider two poles.
    – Dana
    2 days ago










  • Regardless of the exponential function as $e^{frac{x}{2}}$ couldn't solve the question?
    – Dana
    yesterday











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3002323%2finverse-laplace-of-hypergeometric-confluent-function%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
0
down vote













Let $a > 0, ,b > 0, ,0 < x < 1$. The Bromwich integral of $F(s) = {_1hspace{-2px}F_1}(a s + b; 2 a s + 1; x) - e^{x/2}$ exists and can be computed by applying the residue theorem. Let $j in mathbb N^0, ,l = (j + 1)/2$, then
$$c_{k, j} = operatorname*{Res}_{s = -l/a}
frac {(a s + b)_k} {(2 a s + 1)_k} frac {x^k} {k!} e^{t s} =
frac {(-1)^j (b - l)_k ,x^k e^{-l t/a}} {2 a k! j! (k - j - 1)!}, \
mathcal L^{-1}[F] =
sum_{k = 0}^infty sum_{j = 0}^{k - 1} c_{k, j} =
sum_{j = 0}^infty sum_{k = j + 1}^infty c_{k, j} = \
frac 1 {2 a} sum_{j = 0}^infty
frac {Gamma(b + l)} {Gamma(b - l)}
frac {(-1)^j x^{j + 1}} {j! (j + 1)!}
{_1hspace{-2px}F_1}(b + l; j + 2; x) e^{-l t/a}, \
mathcal L^{-1}_{s to t} [F(s) + e^{x/2}] =
mathcal L^{-1}_{s to t} [F(s)] + e^{x/2} delta(t).$$






share|cite|improve this answer























  • :I don't understand your answer.
    – Dana
    2 days ago












  • Consider these questions: 1) How can you tell whether you're computing the inverse transform of ${_1hspace{-2px}F_1}(a s + b; 2 a s + 1; x)$ or of ${_1hspace{-2px}F_1}(a s + b; 2 a s + 1; x) - e^{x/2}$? Those two functions have the same poles and the same residues; 2) What is the inverse transform of $1 + 1/s$? Can it be found by evaluating $int_{gamma - i infty}^{gamma + i infty} (1 + 1/s) e^{t s} ds$?
    – Maxim
    2 days ago










  • What does effect ,added phrase $e^{frac{x}{2}}$on the residues theorem????why is added?
    – Dana
    2 days ago












  • Why did you consider a pole?Is not this the hypergeometric function in the numerator composed of two gamma functions that leads to divergence? So you should consider two poles.
    – Dana
    2 days ago










  • Regardless of the exponential function as $e^{frac{x}{2}}$ couldn't solve the question?
    – Dana
    yesterday















up vote
0
down vote













Let $a > 0, ,b > 0, ,0 < x < 1$. The Bromwich integral of $F(s) = {_1hspace{-2px}F_1}(a s + b; 2 a s + 1; x) - e^{x/2}$ exists and can be computed by applying the residue theorem. Let $j in mathbb N^0, ,l = (j + 1)/2$, then
$$c_{k, j} = operatorname*{Res}_{s = -l/a}
frac {(a s + b)_k} {(2 a s + 1)_k} frac {x^k} {k!} e^{t s} =
frac {(-1)^j (b - l)_k ,x^k e^{-l t/a}} {2 a k! j! (k - j - 1)!}, \
mathcal L^{-1}[F] =
sum_{k = 0}^infty sum_{j = 0}^{k - 1} c_{k, j} =
sum_{j = 0}^infty sum_{k = j + 1}^infty c_{k, j} = \
frac 1 {2 a} sum_{j = 0}^infty
frac {Gamma(b + l)} {Gamma(b - l)}
frac {(-1)^j x^{j + 1}} {j! (j + 1)!}
{_1hspace{-2px}F_1}(b + l; j + 2; x) e^{-l t/a}, \
mathcal L^{-1}_{s to t} [F(s) + e^{x/2}] =
mathcal L^{-1}_{s to t} [F(s)] + e^{x/2} delta(t).$$






share|cite|improve this answer























  • :I don't understand your answer.
    – Dana
    2 days ago












  • Consider these questions: 1) How can you tell whether you're computing the inverse transform of ${_1hspace{-2px}F_1}(a s + b; 2 a s + 1; x)$ or of ${_1hspace{-2px}F_1}(a s + b; 2 a s + 1; x) - e^{x/2}$? Those two functions have the same poles and the same residues; 2) What is the inverse transform of $1 + 1/s$? Can it be found by evaluating $int_{gamma - i infty}^{gamma + i infty} (1 + 1/s) e^{t s} ds$?
    – Maxim
    2 days ago










  • What does effect ,added phrase $e^{frac{x}{2}}$on the residues theorem????why is added?
    – Dana
    2 days ago












  • Why did you consider a pole?Is not this the hypergeometric function in the numerator composed of two gamma functions that leads to divergence? So you should consider two poles.
    – Dana
    2 days ago










  • Regardless of the exponential function as $e^{frac{x}{2}}$ couldn't solve the question?
    – Dana
    yesterday













up vote
0
down vote










up vote
0
down vote









Let $a > 0, ,b > 0, ,0 < x < 1$. The Bromwich integral of $F(s) = {_1hspace{-2px}F_1}(a s + b; 2 a s + 1; x) - e^{x/2}$ exists and can be computed by applying the residue theorem. Let $j in mathbb N^0, ,l = (j + 1)/2$, then
$$c_{k, j} = operatorname*{Res}_{s = -l/a}
frac {(a s + b)_k} {(2 a s + 1)_k} frac {x^k} {k!} e^{t s} =
frac {(-1)^j (b - l)_k ,x^k e^{-l t/a}} {2 a k! j! (k - j - 1)!}, \
mathcal L^{-1}[F] =
sum_{k = 0}^infty sum_{j = 0}^{k - 1} c_{k, j} =
sum_{j = 0}^infty sum_{k = j + 1}^infty c_{k, j} = \
frac 1 {2 a} sum_{j = 0}^infty
frac {Gamma(b + l)} {Gamma(b - l)}
frac {(-1)^j x^{j + 1}} {j! (j + 1)!}
{_1hspace{-2px}F_1}(b + l; j + 2; x) e^{-l t/a}, \
mathcal L^{-1}_{s to t} [F(s) + e^{x/2}] =
mathcal L^{-1}_{s to t} [F(s)] + e^{x/2} delta(t).$$






share|cite|improve this answer














Let $a > 0, ,b > 0, ,0 < x < 1$. The Bromwich integral of $F(s) = {_1hspace{-2px}F_1}(a s + b; 2 a s + 1; x) - e^{x/2}$ exists and can be computed by applying the residue theorem. Let $j in mathbb N^0, ,l = (j + 1)/2$, then
$$c_{k, j} = operatorname*{Res}_{s = -l/a}
frac {(a s + b)_k} {(2 a s + 1)_k} frac {x^k} {k!} e^{t s} =
frac {(-1)^j (b - l)_k ,x^k e^{-l t/a}} {2 a k! j! (k - j - 1)!}, \
mathcal L^{-1}[F] =
sum_{k = 0}^infty sum_{j = 0}^{k - 1} c_{k, j} =
sum_{j = 0}^infty sum_{k = j + 1}^infty c_{k, j} = \
frac 1 {2 a} sum_{j = 0}^infty
frac {Gamma(b + l)} {Gamma(b - l)}
frac {(-1)^j x^{j + 1}} {j! (j + 1)!}
{_1hspace{-2px}F_1}(b + l; j + 2; x) e^{-l t/a}, \
mathcal L^{-1}_{s to t} [F(s) + e^{x/2}] =
mathcal L^{-1}_{s to t} [F(s)] + e^{x/2} delta(t).$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 2 days ago

























answered Nov 27 at 15:29









Maxim

3,786218




3,786218












  • :I don't understand your answer.
    – Dana
    2 days ago












  • Consider these questions: 1) How can you tell whether you're computing the inverse transform of ${_1hspace{-2px}F_1}(a s + b; 2 a s + 1; x)$ or of ${_1hspace{-2px}F_1}(a s + b; 2 a s + 1; x) - e^{x/2}$? Those two functions have the same poles and the same residues; 2) What is the inverse transform of $1 + 1/s$? Can it be found by evaluating $int_{gamma - i infty}^{gamma + i infty} (1 + 1/s) e^{t s} ds$?
    – Maxim
    2 days ago










  • What does effect ,added phrase $e^{frac{x}{2}}$on the residues theorem????why is added?
    – Dana
    2 days ago












  • Why did you consider a pole?Is not this the hypergeometric function in the numerator composed of two gamma functions that leads to divergence? So you should consider two poles.
    – Dana
    2 days ago










  • Regardless of the exponential function as $e^{frac{x}{2}}$ couldn't solve the question?
    – Dana
    yesterday


















  • :I don't understand your answer.
    – Dana
    2 days ago












  • Consider these questions: 1) How can you tell whether you're computing the inverse transform of ${_1hspace{-2px}F_1}(a s + b; 2 a s + 1; x)$ or of ${_1hspace{-2px}F_1}(a s + b; 2 a s + 1; x) - e^{x/2}$? Those two functions have the same poles and the same residues; 2) What is the inverse transform of $1 + 1/s$? Can it be found by evaluating $int_{gamma - i infty}^{gamma + i infty} (1 + 1/s) e^{t s} ds$?
    – Maxim
    2 days ago










  • What does effect ,added phrase $e^{frac{x}{2}}$on the residues theorem????why is added?
    – Dana
    2 days ago












  • Why did you consider a pole?Is not this the hypergeometric function in the numerator composed of two gamma functions that leads to divergence? So you should consider two poles.
    – Dana
    2 days ago










  • Regardless of the exponential function as $e^{frac{x}{2}}$ couldn't solve the question?
    – Dana
    yesterday
















:I don't understand your answer.
– Dana
2 days ago






:I don't understand your answer.
– Dana
2 days ago














Consider these questions: 1) How can you tell whether you're computing the inverse transform of ${_1hspace{-2px}F_1}(a s + b; 2 a s + 1; x)$ or of ${_1hspace{-2px}F_1}(a s + b; 2 a s + 1; x) - e^{x/2}$? Those two functions have the same poles and the same residues; 2) What is the inverse transform of $1 + 1/s$? Can it be found by evaluating $int_{gamma - i infty}^{gamma + i infty} (1 + 1/s) e^{t s} ds$?
– Maxim
2 days ago




Consider these questions: 1) How can you tell whether you're computing the inverse transform of ${_1hspace{-2px}F_1}(a s + b; 2 a s + 1; x)$ or of ${_1hspace{-2px}F_1}(a s + b; 2 a s + 1; x) - e^{x/2}$? Those two functions have the same poles and the same residues; 2) What is the inverse transform of $1 + 1/s$? Can it be found by evaluating $int_{gamma - i infty}^{gamma + i infty} (1 + 1/s) e^{t s} ds$?
– Maxim
2 days ago












What does effect ,added phrase $e^{frac{x}{2}}$on the residues theorem????why is added?
– Dana
2 days ago






What does effect ,added phrase $e^{frac{x}{2}}$on the residues theorem????why is added?
– Dana
2 days ago














Why did you consider a pole?Is not this the hypergeometric function in the numerator composed of two gamma functions that leads to divergence? So you should consider two poles.
– Dana
2 days ago




Why did you consider a pole?Is not this the hypergeometric function in the numerator composed of two gamma functions that leads to divergence? So you should consider two poles.
– Dana
2 days ago












Regardless of the exponential function as $e^{frac{x}{2}}$ couldn't solve the question?
– Dana
yesterday




Regardless of the exponential function as $e^{frac{x}{2}}$ couldn't solve the question?
– Dana
yesterday


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3002323%2finverse-laplace-of-hypergeometric-confluent-function%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

AnyDesk - Fatal Program Failure

How to calibrate 16:9 built-in touch-screen to a 4:3 resolution?

QoS: MAC-Priority for clients behind a repeater