Proving a set of vectors is a basis for the quotient map between two vector spaces
up vote
2
down vote
favorite
I want to see if my work is justifiable. I am tasked with the following:
I will neglect to prove (a), as the work for this is fairly straight forward. I will center my attention on (b).
$$text{Implication is} mathscr {B}_{mathbb R^4 / ker T} =
left{
begin{bmatrix}
begin{pmatrix}
0 \
1 \
0 \
0 \
end{pmatrix}
end{bmatrix},begin{bmatrix}
begin{pmatrix}
0 \
0 \
1 \
0 \
end{pmatrix}
end{bmatrix}
right} text{, where $mathscr B$ is the basis for $mathbb R^4 / ker T$}$$
$$
implies text{for some $[v] in mathbb R^4 / ker T$,}$$
$$[v] = a_1 begin{bmatrix}
begin{pmatrix}
0 \
1 \
0 \
0 \
end{pmatrix}
end{bmatrix} + a_2 begin{bmatrix}
begin{pmatrix}
0 \
0 \
1 \
0 \
end{pmatrix}
end{bmatrix}$$
$$implies
begin{bmatrix}
begin{pmatrix}
x \
y \
z \
t \
end{pmatrix}
end{bmatrix}
=
a_1 begin{bmatrix}
begin{pmatrix}
0 \
1 \
0 \
0 \
end{pmatrix}
end{bmatrix} + a_2 begin{bmatrix}
begin{pmatrix}
0 \
0 \
1 \
0 \
end{pmatrix}
end{bmatrix}$$
$$implies
begin{bmatrix}
begin{pmatrix}
x \
y \
z \
t \
end{pmatrix}
end{bmatrix}
=
begin{bmatrix}
begin{pmatrix}
0 \
a_1 \
a_2 \
0 \
end{pmatrix}
end{bmatrix} $$
$$implies
begin{pmatrix}
x \
y \
z \
t \
end{pmatrix} - begin{pmatrix}
0 \
a_1 \
a_2 \
0 \
end{pmatrix} in ker T$$
$$
implies
begin{pmatrix}
x \
y-a_1 \
z-a_2 \
t \
end{pmatrix} = b_1 begin{pmatrix}
1 \
1 \
0 \
0 \
end{pmatrix} + b_2 begin{pmatrix}
0 \
0 \
1 \
1 \
end{pmatrix} text{, where $b_1, b_2 in ker T$}$$
After some algebra...
$$implies a_1 = y - x$$
$$implies a_2 = z - t$$
Which I think implies $mathscr B$ is spanning? $x,y,z,t$ are all arbitrary. Now I am left with proving $mathscr B$ is linearly independent. I may skip a step or two.
$$
begin{bmatrix}
begin{pmatrix}
0 \
a_1 \
a_2 \
0 \
end{pmatrix}
end{bmatrix} = [0] iff a_1 = a_2 = 0 $$
$$begin{bmatrix}
begin{pmatrix}
0 \
a_1 \
a_2 \
0 \
end{pmatrix}
end{bmatrix} = [0] implies
begin{pmatrix}
0 \
a_1 \
a_2 \
0 \
end{pmatrix} - begin{pmatrix}
0 \
0 \
0 \
0 \
end{pmatrix} in Ker T$$
$$implies
begin{pmatrix}
0 \
a_1 \
a_2 \
0 \
end{pmatrix} = begin{pmatrix}
b1 \
b1 \
b2 \
b2 \
end{pmatrix} implies a_1 = a_2 = 0$$
Hence, basis. Has what I done made sense?
linear-algebra proof-verification quotient-spaces
add a comment |
up vote
2
down vote
favorite
I want to see if my work is justifiable. I am tasked with the following:
I will neglect to prove (a), as the work for this is fairly straight forward. I will center my attention on (b).
$$text{Implication is} mathscr {B}_{mathbb R^4 / ker T} =
left{
begin{bmatrix}
begin{pmatrix}
0 \
1 \
0 \
0 \
end{pmatrix}
end{bmatrix},begin{bmatrix}
begin{pmatrix}
0 \
0 \
1 \
0 \
end{pmatrix}
end{bmatrix}
right} text{, where $mathscr B$ is the basis for $mathbb R^4 / ker T$}$$
$$
implies text{for some $[v] in mathbb R^4 / ker T$,}$$
$$[v] = a_1 begin{bmatrix}
begin{pmatrix}
0 \
1 \
0 \
0 \
end{pmatrix}
end{bmatrix} + a_2 begin{bmatrix}
begin{pmatrix}
0 \
0 \
1 \
0 \
end{pmatrix}
end{bmatrix}$$
$$implies
begin{bmatrix}
begin{pmatrix}
x \
y \
z \
t \
end{pmatrix}
end{bmatrix}
=
a_1 begin{bmatrix}
begin{pmatrix}
0 \
1 \
0 \
0 \
end{pmatrix}
end{bmatrix} + a_2 begin{bmatrix}
begin{pmatrix}
0 \
0 \
1 \
0 \
end{pmatrix}
end{bmatrix}$$
$$implies
begin{bmatrix}
begin{pmatrix}
x \
y \
z \
t \
end{pmatrix}
end{bmatrix}
=
begin{bmatrix}
begin{pmatrix}
0 \
a_1 \
a_2 \
0 \
end{pmatrix}
end{bmatrix} $$
$$implies
begin{pmatrix}
x \
y \
z \
t \
end{pmatrix} - begin{pmatrix}
0 \
a_1 \
a_2 \
0 \
end{pmatrix} in ker T$$
$$
implies
begin{pmatrix}
x \
y-a_1 \
z-a_2 \
t \
end{pmatrix} = b_1 begin{pmatrix}
1 \
1 \
0 \
0 \
end{pmatrix} + b_2 begin{pmatrix}
0 \
0 \
1 \
1 \
end{pmatrix} text{, where $b_1, b_2 in ker T$}$$
After some algebra...
$$implies a_1 = y - x$$
$$implies a_2 = z - t$$
Which I think implies $mathscr B$ is spanning? $x,y,z,t$ are all arbitrary. Now I am left with proving $mathscr B$ is linearly independent. I may skip a step or two.
$$
begin{bmatrix}
begin{pmatrix}
0 \
a_1 \
a_2 \
0 \
end{pmatrix}
end{bmatrix} = [0] iff a_1 = a_2 = 0 $$
$$begin{bmatrix}
begin{pmatrix}
0 \
a_1 \
a_2 \
0 \
end{pmatrix}
end{bmatrix} = [0] implies
begin{pmatrix}
0 \
a_1 \
a_2 \
0 \
end{pmatrix} - begin{pmatrix}
0 \
0 \
0 \
0 \
end{pmatrix} in Ker T$$
$$implies
begin{pmatrix}
0 \
a_1 \
a_2 \
0 \
end{pmatrix} = begin{pmatrix}
b1 \
b1 \
b2 \
b2 \
end{pmatrix} implies a_1 = a_2 = 0$$
Hence, basis. Has what I done made sense?
linear-algebra proof-verification quotient-spaces
add a comment |
up vote
2
down vote
favorite
up vote
2
down vote
favorite
I want to see if my work is justifiable. I am tasked with the following:
I will neglect to prove (a), as the work for this is fairly straight forward. I will center my attention on (b).
$$text{Implication is} mathscr {B}_{mathbb R^4 / ker T} =
left{
begin{bmatrix}
begin{pmatrix}
0 \
1 \
0 \
0 \
end{pmatrix}
end{bmatrix},begin{bmatrix}
begin{pmatrix}
0 \
0 \
1 \
0 \
end{pmatrix}
end{bmatrix}
right} text{, where $mathscr B$ is the basis for $mathbb R^4 / ker T$}$$
$$
implies text{for some $[v] in mathbb R^4 / ker T$,}$$
$$[v] = a_1 begin{bmatrix}
begin{pmatrix}
0 \
1 \
0 \
0 \
end{pmatrix}
end{bmatrix} + a_2 begin{bmatrix}
begin{pmatrix}
0 \
0 \
1 \
0 \
end{pmatrix}
end{bmatrix}$$
$$implies
begin{bmatrix}
begin{pmatrix}
x \
y \
z \
t \
end{pmatrix}
end{bmatrix}
=
a_1 begin{bmatrix}
begin{pmatrix}
0 \
1 \
0 \
0 \
end{pmatrix}
end{bmatrix} + a_2 begin{bmatrix}
begin{pmatrix}
0 \
0 \
1 \
0 \
end{pmatrix}
end{bmatrix}$$
$$implies
begin{bmatrix}
begin{pmatrix}
x \
y \
z \
t \
end{pmatrix}
end{bmatrix}
=
begin{bmatrix}
begin{pmatrix}
0 \
a_1 \
a_2 \
0 \
end{pmatrix}
end{bmatrix} $$
$$implies
begin{pmatrix}
x \
y \
z \
t \
end{pmatrix} - begin{pmatrix}
0 \
a_1 \
a_2 \
0 \
end{pmatrix} in ker T$$
$$
implies
begin{pmatrix}
x \
y-a_1 \
z-a_2 \
t \
end{pmatrix} = b_1 begin{pmatrix}
1 \
1 \
0 \
0 \
end{pmatrix} + b_2 begin{pmatrix}
0 \
0 \
1 \
1 \
end{pmatrix} text{, where $b_1, b_2 in ker T$}$$
After some algebra...
$$implies a_1 = y - x$$
$$implies a_2 = z - t$$
Which I think implies $mathscr B$ is spanning? $x,y,z,t$ are all arbitrary. Now I am left with proving $mathscr B$ is linearly independent. I may skip a step or two.
$$
begin{bmatrix}
begin{pmatrix}
0 \
a_1 \
a_2 \
0 \
end{pmatrix}
end{bmatrix} = [0] iff a_1 = a_2 = 0 $$
$$begin{bmatrix}
begin{pmatrix}
0 \
a_1 \
a_2 \
0 \
end{pmatrix}
end{bmatrix} = [0] implies
begin{pmatrix}
0 \
a_1 \
a_2 \
0 \
end{pmatrix} - begin{pmatrix}
0 \
0 \
0 \
0 \
end{pmatrix} in Ker T$$
$$implies
begin{pmatrix}
0 \
a_1 \
a_2 \
0 \
end{pmatrix} = begin{pmatrix}
b1 \
b1 \
b2 \
b2 \
end{pmatrix} implies a_1 = a_2 = 0$$
Hence, basis. Has what I done made sense?
linear-algebra proof-verification quotient-spaces
I want to see if my work is justifiable. I am tasked with the following:
I will neglect to prove (a), as the work for this is fairly straight forward. I will center my attention on (b).
$$text{Implication is} mathscr {B}_{mathbb R^4 / ker T} =
left{
begin{bmatrix}
begin{pmatrix}
0 \
1 \
0 \
0 \
end{pmatrix}
end{bmatrix},begin{bmatrix}
begin{pmatrix}
0 \
0 \
1 \
0 \
end{pmatrix}
end{bmatrix}
right} text{, where $mathscr B$ is the basis for $mathbb R^4 / ker T$}$$
$$
implies text{for some $[v] in mathbb R^4 / ker T$,}$$
$$[v] = a_1 begin{bmatrix}
begin{pmatrix}
0 \
1 \
0 \
0 \
end{pmatrix}
end{bmatrix} + a_2 begin{bmatrix}
begin{pmatrix}
0 \
0 \
1 \
0 \
end{pmatrix}
end{bmatrix}$$
$$implies
begin{bmatrix}
begin{pmatrix}
x \
y \
z \
t \
end{pmatrix}
end{bmatrix}
=
a_1 begin{bmatrix}
begin{pmatrix}
0 \
1 \
0 \
0 \
end{pmatrix}
end{bmatrix} + a_2 begin{bmatrix}
begin{pmatrix}
0 \
0 \
1 \
0 \
end{pmatrix}
end{bmatrix}$$
$$implies
begin{bmatrix}
begin{pmatrix}
x \
y \
z \
t \
end{pmatrix}
end{bmatrix}
=
begin{bmatrix}
begin{pmatrix}
0 \
a_1 \
a_2 \
0 \
end{pmatrix}
end{bmatrix} $$
$$implies
begin{pmatrix}
x \
y \
z \
t \
end{pmatrix} - begin{pmatrix}
0 \
a_1 \
a_2 \
0 \
end{pmatrix} in ker T$$
$$
implies
begin{pmatrix}
x \
y-a_1 \
z-a_2 \
t \
end{pmatrix} = b_1 begin{pmatrix}
1 \
1 \
0 \
0 \
end{pmatrix} + b_2 begin{pmatrix}
0 \
0 \
1 \
1 \
end{pmatrix} text{, where $b_1, b_2 in ker T$}$$
After some algebra...
$$implies a_1 = y - x$$
$$implies a_2 = z - t$$
Which I think implies $mathscr B$ is spanning? $x,y,z,t$ are all arbitrary. Now I am left with proving $mathscr B$ is linearly independent. I may skip a step or two.
$$
begin{bmatrix}
begin{pmatrix}
0 \
a_1 \
a_2 \
0 \
end{pmatrix}
end{bmatrix} = [0] iff a_1 = a_2 = 0 $$
$$begin{bmatrix}
begin{pmatrix}
0 \
a_1 \
a_2 \
0 \
end{pmatrix}
end{bmatrix} = [0] implies
begin{pmatrix}
0 \
a_1 \
a_2 \
0 \
end{pmatrix} - begin{pmatrix}
0 \
0 \
0 \
0 \
end{pmatrix} in Ker T$$
$$implies
begin{pmatrix}
0 \
a_1 \
a_2 \
0 \
end{pmatrix} = begin{pmatrix}
b1 \
b1 \
b2 \
b2 \
end{pmatrix} implies a_1 = a_2 = 0$$
Hence, basis. Has what I done made sense?
linear-algebra proof-verification quotient-spaces
linear-algebra proof-verification quotient-spaces
asked Nov 17 at 18:12
sangstar
838214
838214
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
It's all correct.
Note that the 4 given vectors form a basis of $Bbb R^4$, two of them spans the kernel, so the (images of) the other two will be a basis of the quotient space.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
It's all correct.
Note that the 4 given vectors form a basis of $Bbb R^4$, two of them spans the kernel, so the (images of) the other two will be a basis of the quotient space.
add a comment |
up vote
1
down vote
accepted
It's all correct.
Note that the 4 given vectors form a basis of $Bbb R^4$, two of them spans the kernel, so the (images of) the other two will be a basis of the quotient space.
add a comment |
up vote
1
down vote
accepted
up vote
1
down vote
accepted
It's all correct.
Note that the 4 given vectors form a basis of $Bbb R^4$, two of them spans the kernel, so the (images of) the other two will be a basis of the quotient space.
It's all correct.
Note that the 4 given vectors form a basis of $Bbb R^4$, two of them spans the kernel, so the (images of) the other two will be a basis of the quotient space.
answered Nov 17 at 22:02
Berci
59.1k23671
59.1k23671
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3002639%2fproving-a-set-of-vectors-is-a-basis-for-the-quotient-map-between-two-vector-spac%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown