Study the convergence of a series
up vote
1
down vote
favorite
I am studying the convergence of the series $$sumlimits_{n<=0} left(sqrt[n]{n} - 1right)^n$$
I just know that the limit tend to $0$, but I don't know how to prove the convergence.
sequences-and-series
add a comment |
up vote
1
down vote
favorite
I am studying the convergence of the series $$sumlimits_{n<=0} left(sqrt[n]{n} - 1right)^n$$
I just know that the limit tend to $0$, but I don't know how to prove the convergence.
sequences-and-series
2
Do you really mean $nle 0$?
– Lord Shark the Unknown
Nov 17 at 18:26
Have you already tried the root test (en.wikipedia.org/wiki/Root_test) ?
– user25959
Nov 27 at 3:12
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
I am studying the convergence of the series $$sumlimits_{n<=0} left(sqrt[n]{n} - 1right)^n$$
I just know that the limit tend to $0$, but I don't know how to prove the convergence.
sequences-and-series
I am studying the convergence of the series $$sumlimits_{n<=0} left(sqrt[n]{n} - 1right)^n$$
I just know that the limit tend to $0$, but I don't know how to prove the convergence.
sequences-and-series
sequences-and-series
edited Nov 17 at 21:15
rtybase
10.2k21433
10.2k21433
asked Nov 17 at 18:20
Daniel Guerrero
83
83
2
Do you really mean $nle 0$?
– Lord Shark the Unknown
Nov 17 at 18:26
Have you already tried the root test (en.wikipedia.org/wiki/Root_test) ?
– user25959
Nov 27 at 3:12
add a comment |
2
Do you really mean $nle 0$?
– Lord Shark the Unknown
Nov 17 at 18:26
Have you already tried the root test (en.wikipedia.org/wiki/Root_test) ?
– user25959
Nov 27 at 3:12
2
2
Do you really mean $nle 0$?
– Lord Shark the Unknown
Nov 17 at 18:26
Do you really mean $nle 0$?
– Lord Shark the Unknown
Nov 17 at 18:26
Have you already tried the root test (en.wikipedia.org/wiki/Root_test) ?
– user25959
Nov 27 at 3:12
Have you already tried the root test (en.wikipedia.org/wiki/Root_test) ?
– user25959
Nov 27 at 3:12
add a comment |
2 Answers
2
active
oldest
votes
up vote
0
down vote
accepted
I assume you meant $n geq 1$. Using $x^n-1=(x-1)(x^{n-1}+x^{n-2}+...+x^{2}+x+1)$ we have
$$n-1=
left(n^{frac{1}{n}}right)^{n}-1=\
left(n^{frac{1}{n}}-1right)left(n^{frac{1}{n}(n-1)}+n^{frac{1}{n}(n-2)}+...+n^{frac{1}{n}2}+n^{frac{1}{n}}+1right)geq ...$$
using AM-GM
$$... geqleft(n^{frac{1}{n}}-1right)left((n-1)sqrt[n-1]{n^{frac{1}{n}(n-1)}cdot n^{frac{1}{n}(n-2)}cdot ...cdot n^{frac{1}{n}2}cdot n^{frac{1}{n}}}+1right)=\
left(n^{frac{1}{n}}-1right)left((n-1)sqrt[n-1]{n^{frac{1}{n}(n-1+n-2+...+1)}}+1right)=
\
left(n^{frac{1}{n}}-1right)left((n-1)sqrt[n-1]{n^{frac{1}{n}frac{(n-1)n}{2}}}+1right)=\
left(n^{frac{1}{n}}-1right)left((n-1)sqrt{n}+1right)$$
Or
$$0< n^{frac{1}{n}}-1leq frac{n-1}{(n-1)sqrt{n}+1}<frac{1}{sqrt{n}} tag{1}$$
From $(1)$ we see that $limlimits_{nrightarrowinfty} left(n^{frac{1}{n}}-1right)=0$, which means
$0< left(n^{frac{1}{n}}-1right)^n<frac{1}{n^{frac{n}{2}}}$, thus $0<sumlimits_{ngeq1} left(n^{frac{1}{n}}-1right)^n leq sumlimits_{ngeq1} frac{1}{n^{frac{n}{2}}}$. The latter is converging by ratio test $$limlimits_{nrightarrowinfty}frac{frac{1}{(n+1)^{frac{n+1}{2}}}}{frac{1}{n^{frac{n}{2}}}}=
limlimits_{nrightarrowinfty}frac{n^{frac{n}{2}}}{(n+1)^{frac{n+1}{2}}}=
limlimits_{nrightarrowinfty}frac{1}{left(1+frac{1}{n}right)^{frac{n}{2}}cdot sqrt{n+1}}=frac{1}{sqrt{e}cdot limlimits_{nrightarrowinfty}sqrt{n+1}}=0$$
- or simpler version from the definition of the limit, for $forall n> N(varepsilon) Rightarrow 0<left(n^{frac{1}{n}}-1right)<varepsilon <1$, thus $0<left(n^{frac{1}{n}}-1right)^n<varepsilon^n$ and $$0<sumlimits_{ngeq1} left(n^{frac{1}{n}}-1right)^n <
sumlimits_{n=1}^{N(varepsilon)} left(n^{frac{1}{n}}-1right)^n + sumlimits_{n=N(varepsilon)+1} varepsilon^n=
sumlimits_{n=1}^{N(varepsilon)} left(n^{frac{1}{n}}-1right)^n + frac{e^{N(varepsilon)+1}}{1-varepsilon}$$
we just need to find the very first $N(varepsilon)$ for $0<varepsilon<1$ and $sumlimits_{n=1}^{N(varepsilon)} left(n^{frac{1}{n}}-1right)^n$ is a finite number as well as $frac{e^{N(varepsilon)+1}}{1-varepsilon}$. As a result $$0<sumlimits_{ngeq1} left(n^{frac{1}{n}}-1right)^n<infty$$
i.e. converging.
add a comment |
up vote
0
down vote
$sum_{ngeq 1}left(sqrt[n]{n}-1right)^n $ is convergent, since for any $ngeq 2$ we have
$$ sqrt[n]{n} = sqrt[n]{frac{n}{n-1}cdotfrac{n-1}{n-2}cdotldotscdotfrac{2}{1}cdotfrac{1}{1}}leq text{AM}left(1+tfrac{1}{n-1},ldots,1+tfrac{1}{2},2,1right)=1+frac{H_{n-1}}{n} $$
and by the Cauchy-Schwarz inequality $H_nleq frac{pi}{sqrt{6}}sqrt{n} $. The series $sum_{ngeq 1}frac{C}{n^{n/2}}$ is trivially convergent.
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
accepted
I assume you meant $n geq 1$. Using $x^n-1=(x-1)(x^{n-1}+x^{n-2}+...+x^{2}+x+1)$ we have
$$n-1=
left(n^{frac{1}{n}}right)^{n}-1=\
left(n^{frac{1}{n}}-1right)left(n^{frac{1}{n}(n-1)}+n^{frac{1}{n}(n-2)}+...+n^{frac{1}{n}2}+n^{frac{1}{n}}+1right)geq ...$$
using AM-GM
$$... geqleft(n^{frac{1}{n}}-1right)left((n-1)sqrt[n-1]{n^{frac{1}{n}(n-1)}cdot n^{frac{1}{n}(n-2)}cdot ...cdot n^{frac{1}{n}2}cdot n^{frac{1}{n}}}+1right)=\
left(n^{frac{1}{n}}-1right)left((n-1)sqrt[n-1]{n^{frac{1}{n}(n-1+n-2+...+1)}}+1right)=
\
left(n^{frac{1}{n}}-1right)left((n-1)sqrt[n-1]{n^{frac{1}{n}frac{(n-1)n}{2}}}+1right)=\
left(n^{frac{1}{n}}-1right)left((n-1)sqrt{n}+1right)$$
Or
$$0< n^{frac{1}{n}}-1leq frac{n-1}{(n-1)sqrt{n}+1}<frac{1}{sqrt{n}} tag{1}$$
From $(1)$ we see that $limlimits_{nrightarrowinfty} left(n^{frac{1}{n}}-1right)=0$, which means
$0< left(n^{frac{1}{n}}-1right)^n<frac{1}{n^{frac{n}{2}}}$, thus $0<sumlimits_{ngeq1} left(n^{frac{1}{n}}-1right)^n leq sumlimits_{ngeq1} frac{1}{n^{frac{n}{2}}}$. The latter is converging by ratio test $$limlimits_{nrightarrowinfty}frac{frac{1}{(n+1)^{frac{n+1}{2}}}}{frac{1}{n^{frac{n}{2}}}}=
limlimits_{nrightarrowinfty}frac{n^{frac{n}{2}}}{(n+1)^{frac{n+1}{2}}}=
limlimits_{nrightarrowinfty}frac{1}{left(1+frac{1}{n}right)^{frac{n}{2}}cdot sqrt{n+1}}=frac{1}{sqrt{e}cdot limlimits_{nrightarrowinfty}sqrt{n+1}}=0$$
- or simpler version from the definition of the limit, for $forall n> N(varepsilon) Rightarrow 0<left(n^{frac{1}{n}}-1right)<varepsilon <1$, thus $0<left(n^{frac{1}{n}}-1right)^n<varepsilon^n$ and $$0<sumlimits_{ngeq1} left(n^{frac{1}{n}}-1right)^n <
sumlimits_{n=1}^{N(varepsilon)} left(n^{frac{1}{n}}-1right)^n + sumlimits_{n=N(varepsilon)+1} varepsilon^n=
sumlimits_{n=1}^{N(varepsilon)} left(n^{frac{1}{n}}-1right)^n + frac{e^{N(varepsilon)+1}}{1-varepsilon}$$
we just need to find the very first $N(varepsilon)$ for $0<varepsilon<1$ and $sumlimits_{n=1}^{N(varepsilon)} left(n^{frac{1}{n}}-1right)^n$ is a finite number as well as $frac{e^{N(varepsilon)+1}}{1-varepsilon}$. As a result $$0<sumlimits_{ngeq1} left(n^{frac{1}{n}}-1right)^n<infty$$
i.e. converging.
add a comment |
up vote
0
down vote
accepted
I assume you meant $n geq 1$. Using $x^n-1=(x-1)(x^{n-1}+x^{n-2}+...+x^{2}+x+1)$ we have
$$n-1=
left(n^{frac{1}{n}}right)^{n}-1=\
left(n^{frac{1}{n}}-1right)left(n^{frac{1}{n}(n-1)}+n^{frac{1}{n}(n-2)}+...+n^{frac{1}{n}2}+n^{frac{1}{n}}+1right)geq ...$$
using AM-GM
$$... geqleft(n^{frac{1}{n}}-1right)left((n-1)sqrt[n-1]{n^{frac{1}{n}(n-1)}cdot n^{frac{1}{n}(n-2)}cdot ...cdot n^{frac{1}{n}2}cdot n^{frac{1}{n}}}+1right)=\
left(n^{frac{1}{n}}-1right)left((n-1)sqrt[n-1]{n^{frac{1}{n}(n-1+n-2+...+1)}}+1right)=
\
left(n^{frac{1}{n}}-1right)left((n-1)sqrt[n-1]{n^{frac{1}{n}frac{(n-1)n}{2}}}+1right)=\
left(n^{frac{1}{n}}-1right)left((n-1)sqrt{n}+1right)$$
Or
$$0< n^{frac{1}{n}}-1leq frac{n-1}{(n-1)sqrt{n}+1}<frac{1}{sqrt{n}} tag{1}$$
From $(1)$ we see that $limlimits_{nrightarrowinfty} left(n^{frac{1}{n}}-1right)=0$, which means
$0< left(n^{frac{1}{n}}-1right)^n<frac{1}{n^{frac{n}{2}}}$, thus $0<sumlimits_{ngeq1} left(n^{frac{1}{n}}-1right)^n leq sumlimits_{ngeq1} frac{1}{n^{frac{n}{2}}}$. The latter is converging by ratio test $$limlimits_{nrightarrowinfty}frac{frac{1}{(n+1)^{frac{n+1}{2}}}}{frac{1}{n^{frac{n}{2}}}}=
limlimits_{nrightarrowinfty}frac{n^{frac{n}{2}}}{(n+1)^{frac{n+1}{2}}}=
limlimits_{nrightarrowinfty}frac{1}{left(1+frac{1}{n}right)^{frac{n}{2}}cdot sqrt{n+1}}=frac{1}{sqrt{e}cdot limlimits_{nrightarrowinfty}sqrt{n+1}}=0$$
- or simpler version from the definition of the limit, for $forall n> N(varepsilon) Rightarrow 0<left(n^{frac{1}{n}}-1right)<varepsilon <1$, thus $0<left(n^{frac{1}{n}}-1right)^n<varepsilon^n$ and $$0<sumlimits_{ngeq1} left(n^{frac{1}{n}}-1right)^n <
sumlimits_{n=1}^{N(varepsilon)} left(n^{frac{1}{n}}-1right)^n + sumlimits_{n=N(varepsilon)+1} varepsilon^n=
sumlimits_{n=1}^{N(varepsilon)} left(n^{frac{1}{n}}-1right)^n + frac{e^{N(varepsilon)+1}}{1-varepsilon}$$
we just need to find the very first $N(varepsilon)$ for $0<varepsilon<1$ and $sumlimits_{n=1}^{N(varepsilon)} left(n^{frac{1}{n}}-1right)^n$ is a finite number as well as $frac{e^{N(varepsilon)+1}}{1-varepsilon}$. As a result $$0<sumlimits_{ngeq1} left(n^{frac{1}{n}}-1right)^n<infty$$
i.e. converging.
add a comment |
up vote
0
down vote
accepted
up vote
0
down vote
accepted
I assume you meant $n geq 1$. Using $x^n-1=(x-1)(x^{n-1}+x^{n-2}+...+x^{2}+x+1)$ we have
$$n-1=
left(n^{frac{1}{n}}right)^{n}-1=\
left(n^{frac{1}{n}}-1right)left(n^{frac{1}{n}(n-1)}+n^{frac{1}{n}(n-2)}+...+n^{frac{1}{n}2}+n^{frac{1}{n}}+1right)geq ...$$
using AM-GM
$$... geqleft(n^{frac{1}{n}}-1right)left((n-1)sqrt[n-1]{n^{frac{1}{n}(n-1)}cdot n^{frac{1}{n}(n-2)}cdot ...cdot n^{frac{1}{n}2}cdot n^{frac{1}{n}}}+1right)=\
left(n^{frac{1}{n}}-1right)left((n-1)sqrt[n-1]{n^{frac{1}{n}(n-1+n-2+...+1)}}+1right)=
\
left(n^{frac{1}{n}}-1right)left((n-1)sqrt[n-1]{n^{frac{1}{n}frac{(n-1)n}{2}}}+1right)=\
left(n^{frac{1}{n}}-1right)left((n-1)sqrt{n}+1right)$$
Or
$$0< n^{frac{1}{n}}-1leq frac{n-1}{(n-1)sqrt{n}+1}<frac{1}{sqrt{n}} tag{1}$$
From $(1)$ we see that $limlimits_{nrightarrowinfty} left(n^{frac{1}{n}}-1right)=0$, which means
$0< left(n^{frac{1}{n}}-1right)^n<frac{1}{n^{frac{n}{2}}}$, thus $0<sumlimits_{ngeq1} left(n^{frac{1}{n}}-1right)^n leq sumlimits_{ngeq1} frac{1}{n^{frac{n}{2}}}$. The latter is converging by ratio test $$limlimits_{nrightarrowinfty}frac{frac{1}{(n+1)^{frac{n+1}{2}}}}{frac{1}{n^{frac{n}{2}}}}=
limlimits_{nrightarrowinfty}frac{n^{frac{n}{2}}}{(n+1)^{frac{n+1}{2}}}=
limlimits_{nrightarrowinfty}frac{1}{left(1+frac{1}{n}right)^{frac{n}{2}}cdot sqrt{n+1}}=frac{1}{sqrt{e}cdot limlimits_{nrightarrowinfty}sqrt{n+1}}=0$$
- or simpler version from the definition of the limit, for $forall n> N(varepsilon) Rightarrow 0<left(n^{frac{1}{n}}-1right)<varepsilon <1$, thus $0<left(n^{frac{1}{n}}-1right)^n<varepsilon^n$ and $$0<sumlimits_{ngeq1} left(n^{frac{1}{n}}-1right)^n <
sumlimits_{n=1}^{N(varepsilon)} left(n^{frac{1}{n}}-1right)^n + sumlimits_{n=N(varepsilon)+1} varepsilon^n=
sumlimits_{n=1}^{N(varepsilon)} left(n^{frac{1}{n}}-1right)^n + frac{e^{N(varepsilon)+1}}{1-varepsilon}$$
we just need to find the very first $N(varepsilon)$ for $0<varepsilon<1$ and $sumlimits_{n=1}^{N(varepsilon)} left(n^{frac{1}{n}}-1right)^n$ is a finite number as well as $frac{e^{N(varepsilon)+1}}{1-varepsilon}$. As a result $$0<sumlimits_{ngeq1} left(n^{frac{1}{n}}-1right)^n<infty$$
i.e. converging.
I assume you meant $n geq 1$. Using $x^n-1=(x-1)(x^{n-1}+x^{n-2}+...+x^{2}+x+1)$ we have
$$n-1=
left(n^{frac{1}{n}}right)^{n}-1=\
left(n^{frac{1}{n}}-1right)left(n^{frac{1}{n}(n-1)}+n^{frac{1}{n}(n-2)}+...+n^{frac{1}{n}2}+n^{frac{1}{n}}+1right)geq ...$$
using AM-GM
$$... geqleft(n^{frac{1}{n}}-1right)left((n-1)sqrt[n-1]{n^{frac{1}{n}(n-1)}cdot n^{frac{1}{n}(n-2)}cdot ...cdot n^{frac{1}{n}2}cdot n^{frac{1}{n}}}+1right)=\
left(n^{frac{1}{n}}-1right)left((n-1)sqrt[n-1]{n^{frac{1}{n}(n-1+n-2+...+1)}}+1right)=
\
left(n^{frac{1}{n}}-1right)left((n-1)sqrt[n-1]{n^{frac{1}{n}frac{(n-1)n}{2}}}+1right)=\
left(n^{frac{1}{n}}-1right)left((n-1)sqrt{n}+1right)$$
Or
$$0< n^{frac{1}{n}}-1leq frac{n-1}{(n-1)sqrt{n}+1}<frac{1}{sqrt{n}} tag{1}$$
From $(1)$ we see that $limlimits_{nrightarrowinfty} left(n^{frac{1}{n}}-1right)=0$, which means
$0< left(n^{frac{1}{n}}-1right)^n<frac{1}{n^{frac{n}{2}}}$, thus $0<sumlimits_{ngeq1} left(n^{frac{1}{n}}-1right)^n leq sumlimits_{ngeq1} frac{1}{n^{frac{n}{2}}}$. The latter is converging by ratio test $$limlimits_{nrightarrowinfty}frac{frac{1}{(n+1)^{frac{n+1}{2}}}}{frac{1}{n^{frac{n}{2}}}}=
limlimits_{nrightarrowinfty}frac{n^{frac{n}{2}}}{(n+1)^{frac{n+1}{2}}}=
limlimits_{nrightarrowinfty}frac{1}{left(1+frac{1}{n}right)^{frac{n}{2}}cdot sqrt{n+1}}=frac{1}{sqrt{e}cdot limlimits_{nrightarrowinfty}sqrt{n+1}}=0$$
- or simpler version from the definition of the limit, for $forall n> N(varepsilon) Rightarrow 0<left(n^{frac{1}{n}}-1right)<varepsilon <1$, thus $0<left(n^{frac{1}{n}}-1right)^n<varepsilon^n$ and $$0<sumlimits_{ngeq1} left(n^{frac{1}{n}}-1right)^n <
sumlimits_{n=1}^{N(varepsilon)} left(n^{frac{1}{n}}-1right)^n + sumlimits_{n=N(varepsilon)+1} varepsilon^n=
sumlimits_{n=1}^{N(varepsilon)} left(n^{frac{1}{n}}-1right)^n + frac{e^{N(varepsilon)+1}}{1-varepsilon}$$
we just need to find the very first $N(varepsilon)$ for $0<varepsilon<1$ and $sumlimits_{n=1}^{N(varepsilon)} left(n^{frac{1}{n}}-1right)^n$ is a finite number as well as $frac{e^{N(varepsilon)+1}}{1-varepsilon}$. As a result $$0<sumlimits_{ngeq1} left(n^{frac{1}{n}}-1right)^n<infty$$
i.e. converging.
answered Nov 17 at 20:58
rtybase
10.2k21433
10.2k21433
add a comment |
add a comment |
up vote
0
down vote
$sum_{ngeq 1}left(sqrt[n]{n}-1right)^n $ is convergent, since for any $ngeq 2$ we have
$$ sqrt[n]{n} = sqrt[n]{frac{n}{n-1}cdotfrac{n-1}{n-2}cdotldotscdotfrac{2}{1}cdotfrac{1}{1}}leq text{AM}left(1+tfrac{1}{n-1},ldots,1+tfrac{1}{2},2,1right)=1+frac{H_{n-1}}{n} $$
and by the Cauchy-Schwarz inequality $H_nleq frac{pi}{sqrt{6}}sqrt{n} $. The series $sum_{ngeq 1}frac{C}{n^{n/2}}$ is trivially convergent.
add a comment |
up vote
0
down vote
$sum_{ngeq 1}left(sqrt[n]{n}-1right)^n $ is convergent, since for any $ngeq 2$ we have
$$ sqrt[n]{n} = sqrt[n]{frac{n}{n-1}cdotfrac{n-1}{n-2}cdotldotscdotfrac{2}{1}cdotfrac{1}{1}}leq text{AM}left(1+tfrac{1}{n-1},ldots,1+tfrac{1}{2},2,1right)=1+frac{H_{n-1}}{n} $$
and by the Cauchy-Schwarz inequality $H_nleq frac{pi}{sqrt{6}}sqrt{n} $. The series $sum_{ngeq 1}frac{C}{n^{n/2}}$ is trivially convergent.
add a comment |
up vote
0
down vote
up vote
0
down vote
$sum_{ngeq 1}left(sqrt[n]{n}-1right)^n $ is convergent, since for any $ngeq 2$ we have
$$ sqrt[n]{n} = sqrt[n]{frac{n}{n-1}cdotfrac{n-1}{n-2}cdotldotscdotfrac{2}{1}cdotfrac{1}{1}}leq text{AM}left(1+tfrac{1}{n-1},ldots,1+tfrac{1}{2},2,1right)=1+frac{H_{n-1}}{n} $$
and by the Cauchy-Schwarz inequality $H_nleq frac{pi}{sqrt{6}}sqrt{n} $. The series $sum_{ngeq 1}frac{C}{n^{n/2}}$ is trivially convergent.
$sum_{ngeq 1}left(sqrt[n]{n}-1right)^n $ is convergent, since for any $ngeq 2$ we have
$$ sqrt[n]{n} = sqrt[n]{frac{n}{n-1}cdotfrac{n-1}{n-2}cdotldotscdotfrac{2}{1}cdotfrac{1}{1}}leq text{AM}left(1+tfrac{1}{n-1},ldots,1+tfrac{1}{2},2,1right)=1+frac{H_{n-1}}{n} $$
and by the Cauchy-Schwarz inequality $H_nleq frac{pi}{sqrt{6}}sqrt{n} $. The series $sum_{ngeq 1}frac{C}{n^{n/2}}$ is trivially convergent.
answered Nov 17 at 20:33
Jack D'Aurizio
283k33275653
283k33275653
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3002648%2fstudy-the-convergence-of-a-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
Do you really mean $nle 0$?
– Lord Shark the Unknown
Nov 17 at 18:26
Have you already tried the root test (en.wikipedia.org/wiki/Root_test) ?
– user25959
Nov 27 at 3:12