Study the convergence of a series











up vote
1
down vote

favorite












I am studying the convergence of the series $$sumlimits_{n<=0} left(sqrt[n]{n} - 1right)^n$$
I just know that the limit tend to $0$, but I don't know how to prove the convergence.










share|cite|improve this question




















  • 2




    Do you really mean $nle 0$?
    – Lord Shark the Unknown
    Nov 17 at 18:26










  • Have you already tried the root test (en.wikipedia.org/wiki/Root_test) ?
    – user25959
    Nov 27 at 3:12















up vote
1
down vote

favorite












I am studying the convergence of the series $$sumlimits_{n<=0} left(sqrt[n]{n} - 1right)^n$$
I just know that the limit tend to $0$, but I don't know how to prove the convergence.










share|cite|improve this question




















  • 2




    Do you really mean $nle 0$?
    – Lord Shark the Unknown
    Nov 17 at 18:26










  • Have you already tried the root test (en.wikipedia.org/wiki/Root_test) ?
    – user25959
    Nov 27 at 3:12













up vote
1
down vote

favorite









up vote
1
down vote

favorite











I am studying the convergence of the series $$sumlimits_{n<=0} left(sqrt[n]{n} - 1right)^n$$
I just know that the limit tend to $0$, but I don't know how to prove the convergence.










share|cite|improve this question















I am studying the convergence of the series $$sumlimits_{n<=0} left(sqrt[n]{n} - 1right)^n$$
I just know that the limit tend to $0$, but I don't know how to prove the convergence.







sequences-and-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 17 at 21:15









rtybase

10.2k21433




10.2k21433










asked Nov 17 at 18:20









Daniel Guerrero

83




83








  • 2




    Do you really mean $nle 0$?
    – Lord Shark the Unknown
    Nov 17 at 18:26










  • Have you already tried the root test (en.wikipedia.org/wiki/Root_test) ?
    – user25959
    Nov 27 at 3:12














  • 2




    Do you really mean $nle 0$?
    – Lord Shark the Unknown
    Nov 17 at 18:26










  • Have you already tried the root test (en.wikipedia.org/wiki/Root_test) ?
    – user25959
    Nov 27 at 3:12








2




2




Do you really mean $nle 0$?
– Lord Shark the Unknown
Nov 17 at 18:26




Do you really mean $nle 0$?
– Lord Shark the Unknown
Nov 17 at 18:26












Have you already tried the root test (en.wikipedia.org/wiki/Root_test) ?
– user25959
Nov 27 at 3:12




Have you already tried the root test (en.wikipedia.org/wiki/Root_test) ?
– user25959
Nov 27 at 3:12










2 Answers
2






active

oldest

votes

















up vote
0
down vote



accepted










I assume you meant $n geq 1$. Using $x^n-1=(x-1)(x^{n-1}+x^{n-2}+...+x^{2}+x+1)$ we have



$$n-1=
left(n^{frac{1}{n}}right)^{n}-1=\
left(n^{frac{1}{n}}-1right)left(n^{frac{1}{n}(n-1)}+n^{frac{1}{n}(n-2)}+...+n^{frac{1}{n}2}+n^{frac{1}{n}}+1right)geq ...$$

using AM-GM
$$... geqleft(n^{frac{1}{n}}-1right)left((n-1)sqrt[n-1]{n^{frac{1}{n}(n-1)}cdot n^{frac{1}{n}(n-2)}cdot ...cdot n^{frac{1}{n}2}cdot n^{frac{1}{n}}}+1right)=\
left(n^{frac{1}{n}}-1right)left((n-1)sqrt[n-1]{n^{frac{1}{n}(n-1+n-2+...+1)}}+1right)=
\
left(n^{frac{1}{n}}-1right)left((n-1)sqrt[n-1]{n^{frac{1}{n}frac{(n-1)n}{2}}}+1right)=\
left(n^{frac{1}{n}}-1right)left((n-1)sqrt{n}+1right)$$



Or
$$0< n^{frac{1}{n}}-1leq frac{n-1}{(n-1)sqrt{n}+1}<frac{1}{sqrt{n}} tag{1}$$





From $(1)$ we see that $limlimits_{nrightarrowinfty} left(n^{frac{1}{n}}-1right)=0$, which means





  • $0< left(n^{frac{1}{n}}-1right)^n<frac{1}{n^{frac{n}{2}}}$, thus $0<sumlimits_{ngeq1} left(n^{frac{1}{n}}-1right)^n leq sumlimits_{ngeq1} frac{1}{n^{frac{n}{2}}}$. The latter is converging by ratio test $$limlimits_{nrightarrowinfty}frac{frac{1}{(n+1)^{frac{n+1}{2}}}}{frac{1}{n^{frac{n}{2}}}}=
    limlimits_{nrightarrowinfty}frac{n^{frac{n}{2}}}{(n+1)^{frac{n+1}{2}}}=
    limlimits_{nrightarrowinfty}frac{1}{left(1+frac{1}{n}right)^{frac{n}{2}}cdot sqrt{n+1}}=frac{1}{sqrt{e}cdot limlimits_{nrightarrowinfty}sqrt{n+1}}=0$$


  • or simpler version from the definition of the limit, for $forall n> N(varepsilon) Rightarrow 0<left(n^{frac{1}{n}}-1right)<varepsilon <1$, thus $0<left(n^{frac{1}{n}}-1right)^n<varepsilon^n$ and $$0<sumlimits_{ngeq1} left(n^{frac{1}{n}}-1right)^n <
    sumlimits_{n=1}^{N(varepsilon)} left(n^{frac{1}{n}}-1right)^n + sumlimits_{n=N(varepsilon)+1} varepsilon^n=
    sumlimits_{n=1}^{N(varepsilon)} left(n^{frac{1}{n}}-1right)^n + frac{e^{N(varepsilon)+1}}{1-varepsilon}$$

    we just need to find the very first $N(varepsilon)$ for $0<varepsilon<1$ and $sumlimits_{n=1}^{N(varepsilon)} left(n^{frac{1}{n}}-1right)^n$ is a finite number as well as $frac{e^{N(varepsilon)+1}}{1-varepsilon}$. As a result $$0<sumlimits_{ngeq1} left(n^{frac{1}{n}}-1right)^n<infty$$
    i.e. converging.






share|cite|improve this answer




























    up vote
    0
    down vote













    $sum_{ngeq 1}left(sqrt[n]{n}-1right)^n $ is convergent, since for any $ngeq 2$ we have
    $$ sqrt[n]{n} = sqrt[n]{frac{n}{n-1}cdotfrac{n-1}{n-2}cdotldotscdotfrac{2}{1}cdotfrac{1}{1}}leq text{AM}left(1+tfrac{1}{n-1},ldots,1+tfrac{1}{2},2,1right)=1+frac{H_{n-1}}{n} $$
    and by the Cauchy-Schwarz inequality $H_nleq frac{pi}{sqrt{6}}sqrt{n} $. The series $sum_{ngeq 1}frac{C}{n^{n/2}}$ is trivially convergent.






    share|cite|improve this answer





















      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3002648%2fstudy-the-convergence-of-a-series%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      0
      down vote



      accepted










      I assume you meant $n geq 1$. Using $x^n-1=(x-1)(x^{n-1}+x^{n-2}+...+x^{2}+x+1)$ we have



      $$n-1=
      left(n^{frac{1}{n}}right)^{n}-1=\
      left(n^{frac{1}{n}}-1right)left(n^{frac{1}{n}(n-1)}+n^{frac{1}{n}(n-2)}+...+n^{frac{1}{n}2}+n^{frac{1}{n}}+1right)geq ...$$

      using AM-GM
      $$... geqleft(n^{frac{1}{n}}-1right)left((n-1)sqrt[n-1]{n^{frac{1}{n}(n-1)}cdot n^{frac{1}{n}(n-2)}cdot ...cdot n^{frac{1}{n}2}cdot n^{frac{1}{n}}}+1right)=\
      left(n^{frac{1}{n}}-1right)left((n-1)sqrt[n-1]{n^{frac{1}{n}(n-1+n-2+...+1)}}+1right)=
      \
      left(n^{frac{1}{n}}-1right)left((n-1)sqrt[n-1]{n^{frac{1}{n}frac{(n-1)n}{2}}}+1right)=\
      left(n^{frac{1}{n}}-1right)left((n-1)sqrt{n}+1right)$$



      Or
      $$0< n^{frac{1}{n}}-1leq frac{n-1}{(n-1)sqrt{n}+1}<frac{1}{sqrt{n}} tag{1}$$





      From $(1)$ we see that $limlimits_{nrightarrowinfty} left(n^{frac{1}{n}}-1right)=0$, which means





      • $0< left(n^{frac{1}{n}}-1right)^n<frac{1}{n^{frac{n}{2}}}$, thus $0<sumlimits_{ngeq1} left(n^{frac{1}{n}}-1right)^n leq sumlimits_{ngeq1} frac{1}{n^{frac{n}{2}}}$. The latter is converging by ratio test $$limlimits_{nrightarrowinfty}frac{frac{1}{(n+1)^{frac{n+1}{2}}}}{frac{1}{n^{frac{n}{2}}}}=
        limlimits_{nrightarrowinfty}frac{n^{frac{n}{2}}}{(n+1)^{frac{n+1}{2}}}=
        limlimits_{nrightarrowinfty}frac{1}{left(1+frac{1}{n}right)^{frac{n}{2}}cdot sqrt{n+1}}=frac{1}{sqrt{e}cdot limlimits_{nrightarrowinfty}sqrt{n+1}}=0$$


      • or simpler version from the definition of the limit, for $forall n> N(varepsilon) Rightarrow 0<left(n^{frac{1}{n}}-1right)<varepsilon <1$, thus $0<left(n^{frac{1}{n}}-1right)^n<varepsilon^n$ and $$0<sumlimits_{ngeq1} left(n^{frac{1}{n}}-1right)^n <
        sumlimits_{n=1}^{N(varepsilon)} left(n^{frac{1}{n}}-1right)^n + sumlimits_{n=N(varepsilon)+1} varepsilon^n=
        sumlimits_{n=1}^{N(varepsilon)} left(n^{frac{1}{n}}-1right)^n + frac{e^{N(varepsilon)+1}}{1-varepsilon}$$

        we just need to find the very first $N(varepsilon)$ for $0<varepsilon<1$ and $sumlimits_{n=1}^{N(varepsilon)} left(n^{frac{1}{n}}-1right)^n$ is a finite number as well as $frac{e^{N(varepsilon)+1}}{1-varepsilon}$. As a result $$0<sumlimits_{ngeq1} left(n^{frac{1}{n}}-1right)^n<infty$$
        i.e. converging.






      share|cite|improve this answer

























        up vote
        0
        down vote



        accepted










        I assume you meant $n geq 1$. Using $x^n-1=(x-1)(x^{n-1}+x^{n-2}+...+x^{2}+x+1)$ we have



        $$n-1=
        left(n^{frac{1}{n}}right)^{n}-1=\
        left(n^{frac{1}{n}}-1right)left(n^{frac{1}{n}(n-1)}+n^{frac{1}{n}(n-2)}+...+n^{frac{1}{n}2}+n^{frac{1}{n}}+1right)geq ...$$

        using AM-GM
        $$... geqleft(n^{frac{1}{n}}-1right)left((n-1)sqrt[n-1]{n^{frac{1}{n}(n-1)}cdot n^{frac{1}{n}(n-2)}cdot ...cdot n^{frac{1}{n}2}cdot n^{frac{1}{n}}}+1right)=\
        left(n^{frac{1}{n}}-1right)left((n-1)sqrt[n-1]{n^{frac{1}{n}(n-1+n-2+...+1)}}+1right)=
        \
        left(n^{frac{1}{n}}-1right)left((n-1)sqrt[n-1]{n^{frac{1}{n}frac{(n-1)n}{2}}}+1right)=\
        left(n^{frac{1}{n}}-1right)left((n-1)sqrt{n}+1right)$$



        Or
        $$0< n^{frac{1}{n}}-1leq frac{n-1}{(n-1)sqrt{n}+1}<frac{1}{sqrt{n}} tag{1}$$





        From $(1)$ we see that $limlimits_{nrightarrowinfty} left(n^{frac{1}{n}}-1right)=0$, which means





        • $0< left(n^{frac{1}{n}}-1right)^n<frac{1}{n^{frac{n}{2}}}$, thus $0<sumlimits_{ngeq1} left(n^{frac{1}{n}}-1right)^n leq sumlimits_{ngeq1} frac{1}{n^{frac{n}{2}}}$. The latter is converging by ratio test $$limlimits_{nrightarrowinfty}frac{frac{1}{(n+1)^{frac{n+1}{2}}}}{frac{1}{n^{frac{n}{2}}}}=
          limlimits_{nrightarrowinfty}frac{n^{frac{n}{2}}}{(n+1)^{frac{n+1}{2}}}=
          limlimits_{nrightarrowinfty}frac{1}{left(1+frac{1}{n}right)^{frac{n}{2}}cdot sqrt{n+1}}=frac{1}{sqrt{e}cdot limlimits_{nrightarrowinfty}sqrt{n+1}}=0$$


        • or simpler version from the definition of the limit, for $forall n> N(varepsilon) Rightarrow 0<left(n^{frac{1}{n}}-1right)<varepsilon <1$, thus $0<left(n^{frac{1}{n}}-1right)^n<varepsilon^n$ and $$0<sumlimits_{ngeq1} left(n^{frac{1}{n}}-1right)^n <
          sumlimits_{n=1}^{N(varepsilon)} left(n^{frac{1}{n}}-1right)^n + sumlimits_{n=N(varepsilon)+1} varepsilon^n=
          sumlimits_{n=1}^{N(varepsilon)} left(n^{frac{1}{n}}-1right)^n + frac{e^{N(varepsilon)+1}}{1-varepsilon}$$

          we just need to find the very first $N(varepsilon)$ for $0<varepsilon<1$ and $sumlimits_{n=1}^{N(varepsilon)} left(n^{frac{1}{n}}-1right)^n$ is a finite number as well as $frac{e^{N(varepsilon)+1}}{1-varepsilon}$. As a result $$0<sumlimits_{ngeq1} left(n^{frac{1}{n}}-1right)^n<infty$$
          i.e. converging.






        share|cite|improve this answer























          up vote
          0
          down vote



          accepted







          up vote
          0
          down vote



          accepted






          I assume you meant $n geq 1$. Using $x^n-1=(x-1)(x^{n-1}+x^{n-2}+...+x^{2}+x+1)$ we have



          $$n-1=
          left(n^{frac{1}{n}}right)^{n}-1=\
          left(n^{frac{1}{n}}-1right)left(n^{frac{1}{n}(n-1)}+n^{frac{1}{n}(n-2)}+...+n^{frac{1}{n}2}+n^{frac{1}{n}}+1right)geq ...$$

          using AM-GM
          $$... geqleft(n^{frac{1}{n}}-1right)left((n-1)sqrt[n-1]{n^{frac{1}{n}(n-1)}cdot n^{frac{1}{n}(n-2)}cdot ...cdot n^{frac{1}{n}2}cdot n^{frac{1}{n}}}+1right)=\
          left(n^{frac{1}{n}}-1right)left((n-1)sqrt[n-1]{n^{frac{1}{n}(n-1+n-2+...+1)}}+1right)=
          \
          left(n^{frac{1}{n}}-1right)left((n-1)sqrt[n-1]{n^{frac{1}{n}frac{(n-1)n}{2}}}+1right)=\
          left(n^{frac{1}{n}}-1right)left((n-1)sqrt{n}+1right)$$



          Or
          $$0< n^{frac{1}{n}}-1leq frac{n-1}{(n-1)sqrt{n}+1}<frac{1}{sqrt{n}} tag{1}$$





          From $(1)$ we see that $limlimits_{nrightarrowinfty} left(n^{frac{1}{n}}-1right)=0$, which means





          • $0< left(n^{frac{1}{n}}-1right)^n<frac{1}{n^{frac{n}{2}}}$, thus $0<sumlimits_{ngeq1} left(n^{frac{1}{n}}-1right)^n leq sumlimits_{ngeq1} frac{1}{n^{frac{n}{2}}}$. The latter is converging by ratio test $$limlimits_{nrightarrowinfty}frac{frac{1}{(n+1)^{frac{n+1}{2}}}}{frac{1}{n^{frac{n}{2}}}}=
            limlimits_{nrightarrowinfty}frac{n^{frac{n}{2}}}{(n+1)^{frac{n+1}{2}}}=
            limlimits_{nrightarrowinfty}frac{1}{left(1+frac{1}{n}right)^{frac{n}{2}}cdot sqrt{n+1}}=frac{1}{sqrt{e}cdot limlimits_{nrightarrowinfty}sqrt{n+1}}=0$$


          • or simpler version from the definition of the limit, for $forall n> N(varepsilon) Rightarrow 0<left(n^{frac{1}{n}}-1right)<varepsilon <1$, thus $0<left(n^{frac{1}{n}}-1right)^n<varepsilon^n$ and $$0<sumlimits_{ngeq1} left(n^{frac{1}{n}}-1right)^n <
            sumlimits_{n=1}^{N(varepsilon)} left(n^{frac{1}{n}}-1right)^n + sumlimits_{n=N(varepsilon)+1} varepsilon^n=
            sumlimits_{n=1}^{N(varepsilon)} left(n^{frac{1}{n}}-1right)^n + frac{e^{N(varepsilon)+1}}{1-varepsilon}$$

            we just need to find the very first $N(varepsilon)$ for $0<varepsilon<1$ and $sumlimits_{n=1}^{N(varepsilon)} left(n^{frac{1}{n}}-1right)^n$ is a finite number as well as $frac{e^{N(varepsilon)+1}}{1-varepsilon}$. As a result $$0<sumlimits_{ngeq1} left(n^{frac{1}{n}}-1right)^n<infty$$
            i.e. converging.






          share|cite|improve this answer












          I assume you meant $n geq 1$. Using $x^n-1=(x-1)(x^{n-1}+x^{n-2}+...+x^{2}+x+1)$ we have



          $$n-1=
          left(n^{frac{1}{n}}right)^{n}-1=\
          left(n^{frac{1}{n}}-1right)left(n^{frac{1}{n}(n-1)}+n^{frac{1}{n}(n-2)}+...+n^{frac{1}{n}2}+n^{frac{1}{n}}+1right)geq ...$$

          using AM-GM
          $$... geqleft(n^{frac{1}{n}}-1right)left((n-1)sqrt[n-1]{n^{frac{1}{n}(n-1)}cdot n^{frac{1}{n}(n-2)}cdot ...cdot n^{frac{1}{n}2}cdot n^{frac{1}{n}}}+1right)=\
          left(n^{frac{1}{n}}-1right)left((n-1)sqrt[n-1]{n^{frac{1}{n}(n-1+n-2+...+1)}}+1right)=
          \
          left(n^{frac{1}{n}}-1right)left((n-1)sqrt[n-1]{n^{frac{1}{n}frac{(n-1)n}{2}}}+1right)=\
          left(n^{frac{1}{n}}-1right)left((n-1)sqrt{n}+1right)$$



          Or
          $$0< n^{frac{1}{n}}-1leq frac{n-1}{(n-1)sqrt{n}+1}<frac{1}{sqrt{n}} tag{1}$$





          From $(1)$ we see that $limlimits_{nrightarrowinfty} left(n^{frac{1}{n}}-1right)=0$, which means





          • $0< left(n^{frac{1}{n}}-1right)^n<frac{1}{n^{frac{n}{2}}}$, thus $0<sumlimits_{ngeq1} left(n^{frac{1}{n}}-1right)^n leq sumlimits_{ngeq1} frac{1}{n^{frac{n}{2}}}$. The latter is converging by ratio test $$limlimits_{nrightarrowinfty}frac{frac{1}{(n+1)^{frac{n+1}{2}}}}{frac{1}{n^{frac{n}{2}}}}=
            limlimits_{nrightarrowinfty}frac{n^{frac{n}{2}}}{(n+1)^{frac{n+1}{2}}}=
            limlimits_{nrightarrowinfty}frac{1}{left(1+frac{1}{n}right)^{frac{n}{2}}cdot sqrt{n+1}}=frac{1}{sqrt{e}cdot limlimits_{nrightarrowinfty}sqrt{n+1}}=0$$


          • or simpler version from the definition of the limit, for $forall n> N(varepsilon) Rightarrow 0<left(n^{frac{1}{n}}-1right)<varepsilon <1$, thus $0<left(n^{frac{1}{n}}-1right)^n<varepsilon^n$ and $$0<sumlimits_{ngeq1} left(n^{frac{1}{n}}-1right)^n <
            sumlimits_{n=1}^{N(varepsilon)} left(n^{frac{1}{n}}-1right)^n + sumlimits_{n=N(varepsilon)+1} varepsilon^n=
            sumlimits_{n=1}^{N(varepsilon)} left(n^{frac{1}{n}}-1right)^n + frac{e^{N(varepsilon)+1}}{1-varepsilon}$$

            we just need to find the very first $N(varepsilon)$ for $0<varepsilon<1$ and $sumlimits_{n=1}^{N(varepsilon)} left(n^{frac{1}{n}}-1right)^n$ is a finite number as well as $frac{e^{N(varepsilon)+1}}{1-varepsilon}$. As a result $$0<sumlimits_{ngeq1} left(n^{frac{1}{n}}-1right)^n<infty$$
            i.e. converging.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Nov 17 at 20:58









          rtybase

          10.2k21433




          10.2k21433






















              up vote
              0
              down vote













              $sum_{ngeq 1}left(sqrt[n]{n}-1right)^n $ is convergent, since for any $ngeq 2$ we have
              $$ sqrt[n]{n} = sqrt[n]{frac{n}{n-1}cdotfrac{n-1}{n-2}cdotldotscdotfrac{2}{1}cdotfrac{1}{1}}leq text{AM}left(1+tfrac{1}{n-1},ldots,1+tfrac{1}{2},2,1right)=1+frac{H_{n-1}}{n} $$
              and by the Cauchy-Schwarz inequality $H_nleq frac{pi}{sqrt{6}}sqrt{n} $. The series $sum_{ngeq 1}frac{C}{n^{n/2}}$ is trivially convergent.






              share|cite|improve this answer

























                up vote
                0
                down vote













                $sum_{ngeq 1}left(sqrt[n]{n}-1right)^n $ is convergent, since for any $ngeq 2$ we have
                $$ sqrt[n]{n} = sqrt[n]{frac{n}{n-1}cdotfrac{n-1}{n-2}cdotldotscdotfrac{2}{1}cdotfrac{1}{1}}leq text{AM}left(1+tfrac{1}{n-1},ldots,1+tfrac{1}{2},2,1right)=1+frac{H_{n-1}}{n} $$
                and by the Cauchy-Schwarz inequality $H_nleq frac{pi}{sqrt{6}}sqrt{n} $. The series $sum_{ngeq 1}frac{C}{n^{n/2}}$ is trivially convergent.






                share|cite|improve this answer























                  up vote
                  0
                  down vote










                  up vote
                  0
                  down vote









                  $sum_{ngeq 1}left(sqrt[n]{n}-1right)^n $ is convergent, since for any $ngeq 2$ we have
                  $$ sqrt[n]{n} = sqrt[n]{frac{n}{n-1}cdotfrac{n-1}{n-2}cdotldotscdotfrac{2}{1}cdotfrac{1}{1}}leq text{AM}left(1+tfrac{1}{n-1},ldots,1+tfrac{1}{2},2,1right)=1+frac{H_{n-1}}{n} $$
                  and by the Cauchy-Schwarz inequality $H_nleq frac{pi}{sqrt{6}}sqrt{n} $. The series $sum_{ngeq 1}frac{C}{n^{n/2}}$ is trivially convergent.






                  share|cite|improve this answer












                  $sum_{ngeq 1}left(sqrt[n]{n}-1right)^n $ is convergent, since for any $ngeq 2$ we have
                  $$ sqrt[n]{n} = sqrt[n]{frac{n}{n-1}cdotfrac{n-1}{n-2}cdotldotscdotfrac{2}{1}cdotfrac{1}{1}}leq text{AM}left(1+tfrac{1}{n-1},ldots,1+tfrac{1}{2},2,1right)=1+frac{H_{n-1}}{n} $$
                  and by the Cauchy-Schwarz inequality $H_nleq frac{pi}{sqrt{6}}sqrt{n} $. The series $sum_{ngeq 1}frac{C}{n^{n/2}}$ is trivially convergent.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Nov 17 at 20:33









                  Jack D'Aurizio

                  283k33275653




                  283k33275653






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.





                      Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                      Please pay close attention to the following guidance:


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3002648%2fstudy-the-convergence-of-a-series%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      QoS: MAC-Priority for clients behind a repeater

                      Ивакино (Тотемский район)

                      Can't locate Autom4te/ChannelDefs.pm in @INC (when it definitely is there)