Recurrence relation/with limit
up vote
2
down vote
favorite
Let $F_{n+1}=F_{n-1}+F_{n-2}$ for $n in mathbb{N}$ with $n geq 2$
$F_0:=0$ and $F_1:=1$.
How to compute
$limlimits_{ntoinfty}frac{F_{n-1}}{F_{n+1}}$?
I tried to use Binet's formula:
$limlimits_{ntoinfty}frac{F_{n-1}}{F_{n+1}}=limlimits_{ntoinfty}frac{frac{1}{sqrt{5}}(xi^{n-1}-phi^{n-1})}{frac{1}{sqrt{5}}(xi^{n+1}-phi^{n+1})}=limlimits_{xtoinfty}frac{xi^{n-1}(1-frac{phi^{n-1}}{xi^{n-1}})}{xi^{n+1}(1-frac{phi^{n+1}}{xi^{n+1}})}$
But I don't know what to do next.
I suppose $xi^{n+1}(1-frac{phi^{n+1}}{xi^{n+1}})=xi$ but what about ${xi^{n-1}(1-frac{phi^{n-1}}{xi^{n-1}})}$?
recurrence-relations
New contributor
|
show 1 more comment
up vote
2
down vote
favorite
Let $F_{n+1}=F_{n-1}+F_{n-2}$ for $n in mathbb{N}$ with $n geq 2$
$F_0:=0$ and $F_1:=1$.
How to compute
$limlimits_{ntoinfty}frac{F_{n-1}}{F_{n+1}}$?
I tried to use Binet's formula:
$limlimits_{ntoinfty}frac{F_{n-1}}{F_{n+1}}=limlimits_{ntoinfty}frac{frac{1}{sqrt{5}}(xi^{n-1}-phi^{n-1})}{frac{1}{sqrt{5}}(xi^{n+1}-phi^{n+1})}=limlimits_{xtoinfty}frac{xi^{n-1}(1-frac{phi^{n-1}}{xi^{n-1}})}{xi^{n+1}(1-frac{phi^{n+1}}{xi^{n+1}})}$
But I don't know what to do next.
I suppose $xi^{n+1}(1-frac{phi^{n+1}}{xi^{n+1}})=xi$ but what about ${xi^{n-1}(1-frac{phi^{n-1}}{xi^{n-1}})}$?
recurrence-relations
New contributor
How do you prove existence of $limlimits_{ntoinfty}frac{F_{n-1}}{F_{n+1}}$.
– Yadati Kiran
Nov 27 at 12:07
2
Are you sure it's $$F_{n+1} = F_{n-1} + F_{n-2}$$ and not $$F_n=F_{n-1}+F_{n-2}?$$
– 5xum
Nov 27 at 12:08
5
What is $F_2{}$?
– Arthur
Nov 27 at 12:11
3
In that case, how do you evaluate $displaystyle F_{2}$ ?.
– Felix Marin
Nov 27 at 17:21
1
Binet's formula is only valid if $F_n=F_{n-1}+F_{n-2}$.
– Teepeemm
Nov 27 at 18:07
|
show 1 more comment
up vote
2
down vote
favorite
up vote
2
down vote
favorite
Let $F_{n+1}=F_{n-1}+F_{n-2}$ for $n in mathbb{N}$ with $n geq 2$
$F_0:=0$ and $F_1:=1$.
How to compute
$limlimits_{ntoinfty}frac{F_{n-1}}{F_{n+1}}$?
I tried to use Binet's formula:
$limlimits_{ntoinfty}frac{F_{n-1}}{F_{n+1}}=limlimits_{ntoinfty}frac{frac{1}{sqrt{5}}(xi^{n-1}-phi^{n-1})}{frac{1}{sqrt{5}}(xi^{n+1}-phi^{n+1})}=limlimits_{xtoinfty}frac{xi^{n-1}(1-frac{phi^{n-1}}{xi^{n-1}})}{xi^{n+1}(1-frac{phi^{n+1}}{xi^{n+1}})}$
But I don't know what to do next.
I suppose $xi^{n+1}(1-frac{phi^{n+1}}{xi^{n+1}})=xi$ but what about ${xi^{n-1}(1-frac{phi^{n-1}}{xi^{n-1}})}$?
recurrence-relations
New contributor
Let $F_{n+1}=F_{n-1}+F_{n-2}$ for $n in mathbb{N}$ with $n geq 2$
$F_0:=0$ and $F_1:=1$.
How to compute
$limlimits_{ntoinfty}frac{F_{n-1}}{F_{n+1}}$?
I tried to use Binet's formula:
$limlimits_{ntoinfty}frac{F_{n-1}}{F_{n+1}}=limlimits_{ntoinfty}frac{frac{1}{sqrt{5}}(xi^{n-1}-phi^{n-1})}{frac{1}{sqrt{5}}(xi^{n+1}-phi^{n+1})}=limlimits_{xtoinfty}frac{xi^{n-1}(1-frac{phi^{n-1}}{xi^{n-1}})}{xi^{n+1}(1-frac{phi^{n+1}}{xi^{n+1}})}$
But I don't know what to do next.
I suppose $xi^{n+1}(1-frac{phi^{n+1}}{xi^{n+1}})=xi$ but what about ${xi^{n-1}(1-frac{phi^{n-1}}{xi^{n-1}})}$?
recurrence-relations
recurrence-relations
New contributor
New contributor
edited Nov 27 at 12:37
Mostafa Ayaz
13.1k3735
13.1k3735
New contributor
asked Nov 27 at 12:05
Nekarts
254
254
New contributor
New contributor
How do you prove existence of $limlimits_{ntoinfty}frac{F_{n-1}}{F_{n+1}}$.
– Yadati Kiran
Nov 27 at 12:07
2
Are you sure it's $$F_{n+1} = F_{n-1} + F_{n-2}$$ and not $$F_n=F_{n-1}+F_{n-2}?$$
– 5xum
Nov 27 at 12:08
5
What is $F_2{}$?
– Arthur
Nov 27 at 12:11
3
In that case, how do you evaluate $displaystyle F_{2}$ ?.
– Felix Marin
Nov 27 at 17:21
1
Binet's formula is only valid if $F_n=F_{n-1}+F_{n-2}$.
– Teepeemm
Nov 27 at 18:07
|
show 1 more comment
How do you prove existence of $limlimits_{ntoinfty}frac{F_{n-1}}{F_{n+1}}$.
– Yadati Kiran
Nov 27 at 12:07
2
Are you sure it's $$F_{n+1} = F_{n-1} + F_{n-2}$$ and not $$F_n=F_{n-1}+F_{n-2}?$$
– 5xum
Nov 27 at 12:08
5
What is $F_2{}$?
– Arthur
Nov 27 at 12:11
3
In that case, how do you evaluate $displaystyle F_{2}$ ?.
– Felix Marin
Nov 27 at 17:21
1
Binet's formula is only valid if $F_n=F_{n-1}+F_{n-2}$.
– Teepeemm
Nov 27 at 18:07
How do you prove existence of $limlimits_{ntoinfty}frac{F_{n-1}}{F_{n+1}}$.
– Yadati Kiran
Nov 27 at 12:07
How do you prove existence of $limlimits_{ntoinfty}frac{F_{n-1}}{F_{n+1}}$.
– Yadati Kiran
Nov 27 at 12:07
2
2
Are you sure it's $$F_{n+1} = F_{n-1} + F_{n-2}$$ and not $$F_n=F_{n-1}+F_{n-2}?$$
– 5xum
Nov 27 at 12:08
Are you sure it's $$F_{n+1} = F_{n-1} + F_{n-2}$$ and not $$F_n=F_{n-1}+F_{n-2}?$$
– 5xum
Nov 27 at 12:08
5
5
What is $F_2{}$?
– Arthur
Nov 27 at 12:11
What is $F_2{}$?
– Arthur
Nov 27 at 12:11
3
3
In that case, how do you evaluate $displaystyle F_{2}$ ?.
– Felix Marin
Nov 27 at 17:21
In that case, how do you evaluate $displaystyle F_{2}$ ?.
– Felix Marin
Nov 27 at 17:21
1
1
Binet's formula is only valid if $F_n=F_{n-1}+F_{n-2}$.
– Teepeemm
Nov 27 at 18:07
Binet's formula is only valid if $F_n=F_{n-1}+F_{n-2}$.
– Teepeemm
Nov 27 at 18:07
|
show 1 more comment
3 Answers
3
active
oldest
votes
up vote
1
down vote
accepted
We have$$limlimits_{ntoinfty}frac{xi^{n-1}(1-frac{phi^{n-1}}{xi^{n-1}})}{xi^{n+1}(1-frac{phi^{n+1}}{xi^{n+1}})}={1over xi ^2}lim_{nto infty}{1-left({phiover xi}right)^{n-1}over 1-left({phiover xi}right)^{n+1}}$$where $${phiover xi}={{1-sqrt 5over 2}over {1+sqrt 5over 2}}={1-sqrt 5over 1+sqrt 5}$$therefore $-1<{phi over xi}<0$and we obtain $$lim_{nto infty}{1-left({phiover xi}right)^{n-1}over 1-left({phiover xi}right)^{n+1}}={1over xi ^2}={3-sqrt 5over 2}$$
add a comment |
up vote
5
down vote
$$F_{n+1}=F_n+F_{n-1}$$
$$impliesdfrac{F_{n+1}}{F_n}=dfrac{F_{n-1}}{F_n}+1$$
If $lim_{ntoinfty}dfrac{F_{n+1}}{F_n}=a,$ we have $$a=dfrac1a+1iff a^2-a-1=0, a=?$$
Finally $lim_{ntoinfty}dfrac{F_{n+1}}{F_{n-1}}=lim_{ntoinfty}dfrac{F_{n+1}}{F_n}cdotlim_{ntoinfty}dfrac{F_n}{F_{n-1}}=a^2$
add a comment |
up vote
3
down vote
After$$lim_{ntoinfty}frac{F_{n-1}}{F_{n+1}}=lim_{ntoinfty}frac{frac{1}{sqrt{5}}left(xi^{n-1}-phi^{n-1}right)}{frac{1}{sqrt{5}}left(xi^{n+1}-phi^{n+1}right)},$$you should have obtained$$lim_{ntoinfty}frac{xi^{n-1}left(1-frac{phi^{n-1}}{xi^{n-1}}right)}{xi^{n+1}left(1-frac{phi^{n+1}}{xi^{n+1}}right)},$$which is equal to$$frac1{xi^2}lim_{ntoinfty}frac{1-frac{phi^{n-1}}{xi^{n-1}}}{1-frac{phi^{n+1}}{xi^{n+1}}}=frac1{xi^2}.$$
add a comment |
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
We have$$limlimits_{ntoinfty}frac{xi^{n-1}(1-frac{phi^{n-1}}{xi^{n-1}})}{xi^{n+1}(1-frac{phi^{n+1}}{xi^{n+1}})}={1over xi ^2}lim_{nto infty}{1-left({phiover xi}right)^{n-1}over 1-left({phiover xi}right)^{n+1}}$$where $${phiover xi}={{1-sqrt 5over 2}over {1+sqrt 5over 2}}={1-sqrt 5over 1+sqrt 5}$$therefore $-1<{phi over xi}<0$and we obtain $$lim_{nto infty}{1-left({phiover xi}right)^{n-1}over 1-left({phiover xi}right)^{n+1}}={1over xi ^2}={3-sqrt 5over 2}$$
add a comment |
up vote
1
down vote
accepted
We have$$limlimits_{ntoinfty}frac{xi^{n-1}(1-frac{phi^{n-1}}{xi^{n-1}})}{xi^{n+1}(1-frac{phi^{n+1}}{xi^{n+1}})}={1over xi ^2}lim_{nto infty}{1-left({phiover xi}right)^{n-1}over 1-left({phiover xi}right)^{n+1}}$$where $${phiover xi}={{1-sqrt 5over 2}over {1+sqrt 5over 2}}={1-sqrt 5over 1+sqrt 5}$$therefore $-1<{phi over xi}<0$and we obtain $$lim_{nto infty}{1-left({phiover xi}right)^{n-1}over 1-left({phiover xi}right)^{n+1}}={1over xi ^2}={3-sqrt 5over 2}$$
add a comment |
up vote
1
down vote
accepted
up vote
1
down vote
accepted
We have$$limlimits_{ntoinfty}frac{xi^{n-1}(1-frac{phi^{n-1}}{xi^{n-1}})}{xi^{n+1}(1-frac{phi^{n+1}}{xi^{n+1}})}={1over xi ^2}lim_{nto infty}{1-left({phiover xi}right)^{n-1}over 1-left({phiover xi}right)^{n+1}}$$where $${phiover xi}={{1-sqrt 5over 2}over {1+sqrt 5over 2}}={1-sqrt 5over 1+sqrt 5}$$therefore $-1<{phi over xi}<0$and we obtain $$lim_{nto infty}{1-left({phiover xi}right)^{n-1}over 1-left({phiover xi}right)^{n+1}}={1over xi ^2}={3-sqrt 5over 2}$$
We have$$limlimits_{ntoinfty}frac{xi^{n-1}(1-frac{phi^{n-1}}{xi^{n-1}})}{xi^{n+1}(1-frac{phi^{n+1}}{xi^{n+1}})}={1over xi ^2}lim_{nto infty}{1-left({phiover xi}right)^{n-1}over 1-left({phiover xi}right)^{n+1}}$$where $${phiover xi}={{1-sqrt 5over 2}over {1+sqrt 5over 2}}={1-sqrt 5over 1+sqrt 5}$$therefore $-1<{phi over xi}<0$and we obtain $$lim_{nto infty}{1-left({phiover xi}right)^{n-1}over 1-left({phiover xi}right)^{n+1}}={1over xi ^2}={3-sqrt 5over 2}$$
answered Nov 27 at 12:34
Mostafa Ayaz
13.1k3735
13.1k3735
add a comment |
add a comment |
up vote
5
down vote
$$F_{n+1}=F_n+F_{n-1}$$
$$impliesdfrac{F_{n+1}}{F_n}=dfrac{F_{n-1}}{F_n}+1$$
If $lim_{ntoinfty}dfrac{F_{n+1}}{F_n}=a,$ we have $$a=dfrac1a+1iff a^2-a-1=0, a=?$$
Finally $lim_{ntoinfty}dfrac{F_{n+1}}{F_{n-1}}=lim_{ntoinfty}dfrac{F_{n+1}}{F_n}cdotlim_{ntoinfty}dfrac{F_n}{F_{n-1}}=a^2$
add a comment |
up vote
5
down vote
$$F_{n+1}=F_n+F_{n-1}$$
$$impliesdfrac{F_{n+1}}{F_n}=dfrac{F_{n-1}}{F_n}+1$$
If $lim_{ntoinfty}dfrac{F_{n+1}}{F_n}=a,$ we have $$a=dfrac1a+1iff a^2-a-1=0, a=?$$
Finally $lim_{ntoinfty}dfrac{F_{n+1}}{F_{n-1}}=lim_{ntoinfty}dfrac{F_{n+1}}{F_n}cdotlim_{ntoinfty}dfrac{F_n}{F_{n-1}}=a^2$
add a comment |
up vote
5
down vote
up vote
5
down vote
$$F_{n+1}=F_n+F_{n-1}$$
$$impliesdfrac{F_{n+1}}{F_n}=dfrac{F_{n-1}}{F_n}+1$$
If $lim_{ntoinfty}dfrac{F_{n+1}}{F_n}=a,$ we have $$a=dfrac1a+1iff a^2-a-1=0, a=?$$
Finally $lim_{ntoinfty}dfrac{F_{n+1}}{F_{n-1}}=lim_{ntoinfty}dfrac{F_{n+1}}{F_n}cdotlim_{ntoinfty}dfrac{F_n}{F_{n-1}}=a^2$
$$F_{n+1}=F_n+F_{n-1}$$
$$impliesdfrac{F_{n+1}}{F_n}=dfrac{F_{n-1}}{F_n}+1$$
If $lim_{ntoinfty}dfrac{F_{n+1}}{F_n}=a,$ we have $$a=dfrac1a+1iff a^2-a-1=0, a=?$$
Finally $lim_{ntoinfty}dfrac{F_{n+1}}{F_{n-1}}=lim_{ntoinfty}dfrac{F_{n+1}}{F_n}cdotlim_{ntoinfty}dfrac{F_n}{F_{n-1}}=a^2$
answered Nov 27 at 13:06
lab bhattacharjee
221k15154271
221k15154271
add a comment |
add a comment |
up vote
3
down vote
After$$lim_{ntoinfty}frac{F_{n-1}}{F_{n+1}}=lim_{ntoinfty}frac{frac{1}{sqrt{5}}left(xi^{n-1}-phi^{n-1}right)}{frac{1}{sqrt{5}}left(xi^{n+1}-phi^{n+1}right)},$$you should have obtained$$lim_{ntoinfty}frac{xi^{n-1}left(1-frac{phi^{n-1}}{xi^{n-1}}right)}{xi^{n+1}left(1-frac{phi^{n+1}}{xi^{n+1}}right)},$$which is equal to$$frac1{xi^2}lim_{ntoinfty}frac{1-frac{phi^{n-1}}{xi^{n-1}}}{1-frac{phi^{n+1}}{xi^{n+1}}}=frac1{xi^2}.$$
add a comment |
up vote
3
down vote
After$$lim_{ntoinfty}frac{F_{n-1}}{F_{n+1}}=lim_{ntoinfty}frac{frac{1}{sqrt{5}}left(xi^{n-1}-phi^{n-1}right)}{frac{1}{sqrt{5}}left(xi^{n+1}-phi^{n+1}right)},$$you should have obtained$$lim_{ntoinfty}frac{xi^{n-1}left(1-frac{phi^{n-1}}{xi^{n-1}}right)}{xi^{n+1}left(1-frac{phi^{n+1}}{xi^{n+1}}right)},$$which is equal to$$frac1{xi^2}lim_{ntoinfty}frac{1-frac{phi^{n-1}}{xi^{n-1}}}{1-frac{phi^{n+1}}{xi^{n+1}}}=frac1{xi^2}.$$
add a comment |
up vote
3
down vote
up vote
3
down vote
After$$lim_{ntoinfty}frac{F_{n-1}}{F_{n+1}}=lim_{ntoinfty}frac{frac{1}{sqrt{5}}left(xi^{n-1}-phi^{n-1}right)}{frac{1}{sqrt{5}}left(xi^{n+1}-phi^{n+1}right)},$$you should have obtained$$lim_{ntoinfty}frac{xi^{n-1}left(1-frac{phi^{n-1}}{xi^{n-1}}right)}{xi^{n+1}left(1-frac{phi^{n+1}}{xi^{n+1}}right)},$$which is equal to$$frac1{xi^2}lim_{ntoinfty}frac{1-frac{phi^{n-1}}{xi^{n-1}}}{1-frac{phi^{n+1}}{xi^{n+1}}}=frac1{xi^2}.$$
After$$lim_{ntoinfty}frac{F_{n-1}}{F_{n+1}}=lim_{ntoinfty}frac{frac{1}{sqrt{5}}left(xi^{n-1}-phi^{n-1}right)}{frac{1}{sqrt{5}}left(xi^{n+1}-phi^{n+1}right)},$$you should have obtained$$lim_{ntoinfty}frac{xi^{n-1}left(1-frac{phi^{n-1}}{xi^{n-1}}right)}{xi^{n+1}left(1-frac{phi^{n+1}}{xi^{n+1}}right)},$$which is equal to$$frac1{xi^2}lim_{ntoinfty}frac{1-frac{phi^{n-1}}{xi^{n-1}}}{1-frac{phi^{n+1}}{xi^{n+1}}}=frac1{xi^2}.$$
answered Nov 27 at 12:12
José Carlos Santos
142k20112208
142k20112208
add a comment |
add a comment |
Nekarts is a new contributor. Be nice, and check out our Code of Conduct.
Nekarts is a new contributor. Be nice, and check out our Code of Conduct.
Nekarts is a new contributor. Be nice, and check out our Code of Conduct.
Nekarts is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3015694%2frecurrence-relation-with-limit%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
How do you prove existence of $limlimits_{ntoinfty}frac{F_{n-1}}{F_{n+1}}$.
– Yadati Kiran
Nov 27 at 12:07
2
Are you sure it's $$F_{n+1} = F_{n-1} + F_{n-2}$$ and not $$F_n=F_{n-1}+F_{n-2}?$$
– 5xum
Nov 27 at 12:08
5
What is $F_2{}$?
– Arthur
Nov 27 at 12:11
3
In that case, how do you evaluate $displaystyle F_{2}$ ?.
– Felix Marin
Nov 27 at 17:21
1
Binet's formula is only valid if $F_n=F_{n-1}+F_{n-2}$.
– Teepeemm
Nov 27 at 18:07