What does it mean geometrically to add two matrices?











up vote
6
down vote

favorite
1












If you think of matrix-vector multiplication geometrically as a linear transformation to a new coordinate system and matrix-matrix multiplication as the composition of two separate linear transformations, what does it mean to add two matrices together?



Would it make sense to think of it in terms of adding each basis vector separately to create a new set of basis vectors?










share|cite|improve this question




















  • 1




    You can think of it as adding basis vectors. But beware that after the addition, the new set of vectors may not be independent any more.
    – P. Factor
    Nov 20 at 18:23















up vote
6
down vote

favorite
1












If you think of matrix-vector multiplication geometrically as a linear transformation to a new coordinate system and matrix-matrix multiplication as the composition of two separate linear transformations, what does it mean to add two matrices together?



Would it make sense to think of it in terms of adding each basis vector separately to create a new set of basis vectors?










share|cite|improve this question




















  • 1




    You can think of it as adding basis vectors. But beware that after the addition, the new set of vectors may not be independent any more.
    – P. Factor
    Nov 20 at 18:23













up vote
6
down vote

favorite
1









up vote
6
down vote

favorite
1






1





If you think of matrix-vector multiplication geometrically as a linear transformation to a new coordinate system and matrix-matrix multiplication as the composition of two separate linear transformations, what does it mean to add two matrices together?



Would it make sense to think of it in terms of adding each basis vector separately to create a new set of basis vectors?










share|cite|improve this question















If you think of matrix-vector multiplication geometrically as a linear transformation to a new coordinate system and matrix-matrix multiplication as the composition of two separate linear transformations, what does it mean to add two matrices together?



Would it make sense to think of it in terms of adding each basis vector separately to create a new set of basis vectors?







linear-algebra matrices






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 20 at 18:22

























asked Nov 20 at 18:17









hlinee

634




634








  • 1




    You can think of it as adding basis vectors. But beware that after the addition, the new set of vectors may not be independent any more.
    – P. Factor
    Nov 20 at 18:23














  • 1




    You can think of it as adding basis vectors. But beware that after the addition, the new set of vectors may not be independent any more.
    – P. Factor
    Nov 20 at 18:23








1




1




You can think of it as adding basis vectors. But beware that after the addition, the new set of vectors may not be independent any more.
– P. Factor
Nov 20 at 18:23




You can think of it as adding basis vectors. But beware that after the addition, the new set of vectors may not be independent any more.
– P. Factor
Nov 20 at 18:23










1 Answer
1






active

oldest

votes

















up vote
6
down vote



accepted










Linearity works both ways. That is,
$$
(A+B)vec{v} = Avec{v} + Bvec{v}.
$$

Thus, you can think of the linear transformation defined by $A+B$ as applied to the vector $vec{v}$ as addition of the images under $A$ and $B$, separately, added together.






share|cite|improve this answer





















    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006694%2fwhat-does-it-mean-geometrically-to-add-two-matrices%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    6
    down vote



    accepted










    Linearity works both ways. That is,
    $$
    (A+B)vec{v} = Avec{v} + Bvec{v}.
    $$

    Thus, you can think of the linear transformation defined by $A+B$ as applied to the vector $vec{v}$ as addition of the images under $A$ and $B$, separately, added together.






    share|cite|improve this answer

























      up vote
      6
      down vote



      accepted










      Linearity works both ways. That is,
      $$
      (A+B)vec{v} = Avec{v} + Bvec{v}.
      $$

      Thus, you can think of the linear transformation defined by $A+B$ as applied to the vector $vec{v}$ as addition of the images under $A$ and $B$, separately, added together.






      share|cite|improve this answer























        up vote
        6
        down vote



        accepted







        up vote
        6
        down vote



        accepted






        Linearity works both ways. That is,
        $$
        (A+B)vec{v} = Avec{v} + Bvec{v}.
        $$

        Thus, you can think of the linear transformation defined by $A+B$ as applied to the vector $vec{v}$ as addition of the images under $A$ and $B$, separately, added together.






        share|cite|improve this answer












        Linearity works both ways. That is,
        $$
        (A+B)vec{v} = Avec{v} + Bvec{v}.
        $$

        Thus, you can think of the linear transformation defined by $A+B$ as applied to the vector $vec{v}$ as addition of the images under $A$ and $B$, separately, added together.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Nov 20 at 18:24









        Mark McClure

        23.2k34170




        23.2k34170






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006694%2fwhat-does-it-mean-geometrically-to-add-two-matrices%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            AnyDesk - Fatal Program Failure

            How to calibrate 16:9 built-in touch-screen to a 4:3 resolution?

            QoS: MAC-Priority for clients behind a repeater