Verification of Laurent series for the function $f(z)=frac{2}{(z+2)^2}-frac{5}{z-4}$











up vote
3
down vote

favorite












Suppose that $$f(z)=frac{2}{(z+2)^2}-frac{5}{z-4}.$$ Find the Laurent series for $f$ in powers of $z-2$ that converges when $z=1$.



This is how I approached the problem:
begin{align}
f(z)&=-2 frac{d}{dz}left(frac{1}{z+2}right)-frac{5}{(z-2)-2} \
&=-2 frac{d}{dz}left(frac{1}{4}left(frac{1}{1+frac{(z-2)}{4}}right)right)+frac{5}{2}left(frac{1}{1-frac{(z-2)}{2}}right) \
&=-2 frac{d}{dz}left(frac{1}{4}sum_{n=0}^{infty} (-1)^nleft(frac{z-2}{4}right)^nright)+frac{5}{2}left(sum_{n=0}^{infty} left(frac{z-2}{2}right)^nright) \
&=-2sum_{n=1}^{infty} (-1)^nfrac{n(z-2)^{n-1}}{4^{n+1}}+5sum_{n=0}^{infty} frac{(z-2)}{2^{n+1}}^n.
end{align}

I believe this is the right answer, yet the answer provided (using a different method) states the answer is $$f(z)=sum_{n=0}^{infty}c_n(z-2)^n, c_n=(-1)^nfrac{2(n+1)}{4^{n+3}}+frac{5}{2^{n+1}}.$$










share|cite|improve this question


















  • 2




    It is the same if you rearrange the summation index.
    – Apocalypse
    Nov 17 at 7:15






  • 1




    @Apocalypse No, it is not.
    – José Carlos Santos
    Nov 17 at 8:04















up vote
3
down vote

favorite












Suppose that $$f(z)=frac{2}{(z+2)^2}-frac{5}{z-4}.$$ Find the Laurent series for $f$ in powers of $z-2$ that converges when $z=1$.



This is how I approached the problem:
begin{align}
f(z)&=-2 frac{d}{dz}left(frac{1}{z+2}right)-frac{5}{(z-2)-2} \
&=-2 frac{d}{dz}left(frac{1}{4}left(frac{1}{1+frac{(z-2)}{4}}right)right)+frac{5}{2}left(frac{1}{1-frac{(z-2)}{2}}right) \
&=-2 frac{d}{dz}left(frac{1}{4}sum_{n=0}^{infty} (-1)^nleft(frac{z-2}{4}right)^nright)+frac{5}{2}left(sum_{n=0}^{infty} left(frac{z-2}{2}right)^nright) \
&=-2sum_{n=1}^{infty} (-1)^nfrac{n(z-2)^{n-1}}{4^{n+1}}+5sum_{n=0}^{infty} frac{(z-2)}{2^{n+1}}^n.
end{align}

I believe this is the right answer, yet the answer provided (using a different method) states the answer is $$f(z)=sum_{n=0}^{infty}c_n(z-2)^n, c_n=(-1)^nfrac{2(n+1)}{4^{n+3}}+frac{5}{2^{n+1}}.$$










share|cite|improve this question


















  • 2




    It is the same if you rearrange the summation index.
    – Apocalypse
    Nov 17 at 7:15






  • 1




    @Apocalypse No, it is not.
    – José Carlos Santos
    Nov 17 at 8:04













up vote
3
down vote

favorite









up vote
3
down vote

favorite











Suppose that $$f(z)=frac{2}{(z+2)^2}-frac{5}{z-4}.$$ Find the Laurent series for $f$ in powers of $z-2$ that converges when $z=1$.



This is how I approached the problem:
begin{align}
f(z)&=-2 frac{d}{dz}left(frac{1}{z+2}right)-frac{5}{(z-2)-2} \
&=-2 frac{d}{dz}left(frac{1}{4}left(frac{1}{1+frac{(z-2)}{4}}right)right)+frac{5}{2}left(frac{1}{1-frac{(z-2)}{2}}right) \
&=-2 frac{d}{dz}left(frac{1}{4}sum_{n=0}^{infty} (-1)^nleft(frac{z-2}{4}right)^nright)+frac{5}{2}left(sum_{n=0}^{infty} left(frac{z-2}{2}right)^nright) \
&=-2sum_{n=1}^{infty} (-1)^nfrac{n(z-2)^{n-1}}{4^{n+1}}+5sum_{n=0}^{infty} frac{(z-2)}{2^{n+1}}^n.
end{align}

I believe this is the right answer, yet the answer provided (using a different method) states the answer is $$f(z)=sum_{n=0}^{infty}c_n(z-2)^n, c_n=(-1)^nfrac{2(n+1)}{4^{n+3}}+frac{5}{2^{n+1}}.$$










share|cite|improve this question













Suppose that $$f(z)=frac{2}{(z+2)^2}-frac{5}{z-4}.$$ Find the Laurent series for $f$ in powers of $z-2$ that converges when $z=1$.



This is how I approached the problem:
begin{align}
f(z)&=-2 frac{d}{dz}left(frac{1}{z+2}right)-frac{5}{(z-2)-2} \
&=-2 frac{d}{dz}left(frac{1}{4}left(frac{1}{1+frac{(z-2)}{4}}right)right)+frac{5}{2}left(frac{1}{1-frac{(z-2)}{2}}right) \
&=-2 frac{d}{dz}left(frac{1}{4}sum_{n=0}^{infty} (-1)^nleft(frac{z-2}{4}right)^nright)+frac{5}{2}left(sum_{n=0}^{infty} left(frac{z-2}{2}right)^nright) \
&=-2sum_{n=1}^{infty} (-1)^nfrac{n(z-2)^{n-1}}{4^{n+1}}+5sum_{n=0}^{infty} frac{(z-2)}{2^{n+1}}^n.
end{align}

I believe this is the right answer, yet the answer provided (using a different method) states the answer is $$f(z)=sum_{n=0}^{infty}c_n(z-2)^n, c_n=(-1)^nfrac{2(n+1)}{4^{n+3}}+frac{5}{2^{n+1}}.$$







complex-analysis proof-verification laurent-series






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Nov 17 at 7:06









JulianAngussmith

3810




3810








  • 2




    It is the same if you rearrange the summation index.
    – Apocalypse
    Nov 17 at 7:15






  • 1




    @Apocalypse No, it is not.
    – José Carlos Santos
    Nov 17 at 8:04














  • 2




    It is the same if you rearrange the summation index.
    – Apocalypse
    Nov 17 at 7:15






  • 1




    @Apocalypse No, it is not.
    – José Carlos Santos
    Nov 17 at 8:04








2




2




It is the same if you rearrange the summation index.
– Apocalypse
Nov 17 at 7:15




It is the same if you rearrange the summation index.
– Apocalypse
Nov 17 at 7:15




1




1




@Apocalypse No, it is not.
– José Carlos Santos
Nov 17 at 8:04




@Apocalypse No, it is not.
– José Carlos Santos
Nov 17 at 8:04










1 Answer
1






active

oldest

votes

















up vote
2
down vote



accepted










After the last $=$ sign, what you got was:$$-2sum_{n=1}^infty(-1)^nfrac{n(z-2)^{n-1}}{4^{n+1}}.$$Since you have that $-2$ outside the sum, this is equal to$$sum_{n=1}^infty(-1)^{n-1}frac{2n(z-2)^{n-1}}{4^{n+1}}=sum_{n=0}^infty(-1)^nfrac{2(n+1)(z-2)^n}{4^{n+2}}.$$So, the provided answer is not correct.






share|cite|improve this answer























  • I'm unsure of how to obtain $4^{n+2}$. I have that begin{align}-2frac{d}{dz}left(frac{1}{4}sum_{n=0}^{infty}(-1)^nleft(frac{z-2}{4}right)^nright) &=-2cdot frac{1}{4}sum_{n=1}^{infty}(-1)^ncdotfrac{n}{4}cdotleft(frac{z-2}{4}right)^{n-1} \ &=sum_{n=1}^{infty} (-1)^{n+1}frac{2n(z-2)^{n-1}}{4^{n+1}}. end{align} Where have I missed the factor of $1/4$?
    – JulianAngussmith
    Nov 17 at 7:45










  • My mistake. I've edited my answer. The provided answer is not correct. I've checked with Mathematica.
    – José Carlos Santos
    Nov 17 at 7:58












  • Thank you for checking. I was scratching my head for a few seconds haha
    – JulianAngussmith
    Nov 17 at 8:03











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3002050%2fverification-of-laurent-series-for-the-function-fz-frac2z22-frac5%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
2
down vote



accepted










After the last $=$ sign, what you got was:$$-2sum_{n=1}^infty(-1)^nfrac{n(z-2)^{n-1}}{4^{n+1}}.$$Since you have that $-2$ outside the sum, this is equal to$$sum_{n=1}^infty(-1)^{n-1}frac{2n(z-2)^{n-1}}{4^{n+1}}=sum_{n=0}^infty(-1)^nfrac{2(n+1)(z-2)^n}{4^{n+2}}.$$So, the provided answer is not correct.






share|cite|improve this answer























  • I'm unsure of how to obtain $4^{n+2}$. I have that begin{align}-2frac{d}{dz}left(frac{1}{4}sum_{n=0}^{infty}(-1)^nleft(frac{z-2}{4}right)^nright) &=-2cdot frac{1}{4}sum_{n=1}^{infty}(-1)^ncdotfrac{n}{4}cdotleft(frac{z-2}{4}right)^{n-1} \ &=sum_{n=1}^{infty} (-1)^{n+1}frac{2n(z-2)^{n-1}}{4^{n+1}}. end{align} Where have I missed the factor of $1/4$?
    – JulianAngussmith
    Nov 17 at 7:45










  • My mistake. I've edited my answer. The provided answer is not correct. I've checked with Mathematica.
    – José Carlos Santos
    Nov 17 at 7:58












  • Thank you for checking. I was scratching my head for a few seconds haha
    – JulianAngussmith
    Nov 17 at 8:03















up vote
2
down vote



accepted










After the last $=$ sign, what you got was:$$-2sum_{n=1}^infty(-1)^nfrac{n(z-2)^{n-1}}{4^{n+1}}.$$Since you have that $-2$ outside the sum, this is equal to$$sum_{n=1}^infty(-1)^{n-1}frac{2n(z-2)^{n-1}}{4^{n+1}}=sum_{n=0}^infty(-1)^nfrac{2(n+1)(z-2)^n}{4^{n+2}}.$$So, the provided answer is not correct.






share|cite|improve this answer























  • I'm unsure of how to obtain $4^{n+2}$. I have that begin{align}-2frac{d}{dz}left(frac{1}{4}sum_{n=0}^{infty}(-1)^nleft(frac{z-2}{4}right)^nright) &=-2cdot frac{1}{4}sum_{n=1}^{infty}(-1)^ncdotfrac{n}{4}cdotleft(frac{z-2}{4}right)^{n-1} \ &=sum_{n=1}^{infty} (-1)^{n+1}frac{2n(z-2)^{n-1}}{4^{n+1}}. end{align} Where have I missed the factor of $1/4$?
    – JulianAngussmith
    Nov 17 at 7:45










  • My mistake. I've edited my answer. The provided answer is not correct. I've checked with Mathematica.
    – José Carlos Santos
    Nov 17 at 7:58












  • Thank you for checking. I was scratching my head for a few seconds haha
    – JulianAngussmith
    Nov 17 at 8:03













up vote
2
down vote



accepted







up vote
2
down vote



accepted






After the last $=$ sign, what you got was:$$-2sum_{n=1}^infty(-1)^nfrac{n(z-2)^{n-1}}{4^{n+1}}.$$Since you have that $-2$ outside the sum, this is equal to$$sum_{n=1}^infty(-1)^{n-1}frac{2n(z-2)^{n-1}}{4^{n+1}}=sum_{n=0}^infty(-1)^nfrac{2(n+1)(z-2)^n}{4^{n+2}}.$$So, the provided answer is not correct.






share|cite|improve this answer














After the last $=$ sign, what you got was:$$-2sum_{n=1}^infty(-1)^nfrac{n(z-2)^{n-1}}{4^{n+1}}.$$Since you have that $-2$ outside the sum, this is equal to$$sum_{n=1}^infty(-1)^{n-1}frac{2n(z-2)^{n-1}}{4^{n+1}}=sum_{n=0}^infty(-1)^nfrac{2(n+1)(z-2)^n}{4^{n+2}}.$$So, the provided answer is not correct.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Nov 17 at 7:57

























answered Nov 17 at 7:30









José Carlos Santos

142k20111207




142k20111207












  • I'm unsure of how to obtain $4^{n+2}$. I have that begin{align}-2frac{d}{dz}left(frac{1}{4}sum_{n=0}^{infty}(-1)^nleft(frac{z-2}{4}right)^nright) &=-2cdot frac{1}{4}sum_{n=1}^{infty}(-1)^ncdotfrac{n}{4}cdotleft(frac{z-2}{4}right)^{n-1} \ &=sum_{n=1}^{infty} (-1)^{n+1}frac{2n(z-2)^{n-1}}{4^{n+1}}. end{align} Where have I missed the factor of $1/4$?
    – JulianAngussmith
    Nov 17 at 7:45










  • My mistake. I've edited my answer. The provided answer is not correct. I've checked with Mathematica.
    – José Carlos Santos
    Nov 17 at 7:58












  • Thank you for checking. I was scratching my head for a few seconds haha
    – JulianAngussmith
    Nov 17 at 8:03


















  • I'm unsure of how to obtain $4^{n+2}$. I have that begin{align}-2frac{d}{dz}left(frac{1}{4}sum_{n=0}^{infty}(-1)^nleft(frac{z-2}{4}right)^nright) &=-2cdot frac{1}{4}sum_{n=1}^{infty}(-1)^ncdotfrac{n}{4}cdotleft(frac{z-2}{4}right)^{n-1} \ &=sum_{n=1}^{infty} (-1)^{n+1}frac{2n(z-2)^{n-1}}{4^{n+1}}. end{align} Where have I missed the factor of $1/4$?
    – JulianAngussmith
    Nov 17 at 7:45










  • My mistake. I've edited my answer. The provided answer is not correct. I've checked with Mathematica.
    – José Carlos Santos
    Nov 17 at 7:58












  • Thank you for checking. I was scratching my head for a few seconds haha
    – JulianAngussmith
    Nov 17 at 8:03
















I'm unsure of how to obtain $4^{n+2}$. I have that begin{align}-2frac{d}{dz}left(frac{1}{4}sum_{n=0}^{infty}(-1)^nleft(frac{z-2}{4}right)^nright) &=-2cdot frac{1}{4}sum_{n=1}^{infty}(-1)^ncdotfrac{n}{4}cdotleft(frac{z-2}{4}right)^{n-1} \ &=sum_{n=1}^{infty} (-1)^{n+1}frac{2n(z-2)^{n-1}}{4^{n+1}}. end{align} Where have I missed the factor of $1/4$?
– JulianAngussmith
Nov 17 at 7:45




I'm unsure of how to obtain $4^{n+2}$. I have that begin{align}-2frac{d}{dz}left(frac{1}{4}sum_{n=0}^{infty}(-1)^nleft(frac{z-2}{4}right)^nright) &=-2cdot frac{1}{4}sum_{n=1}^{infty}(-1)^ncdotfrac{n}{4}cdotleft(frac{z-2}{4}right)^{n-1} \ &=sum_{n=1}^{infty} (-1)^{n+1}frac{2n(z-2)^{n-1}}{4^{n+1}}. end{align} Where have I missed the factor of $1/4$?
– JulianAngussmith
Nov 17 at 7:45












My mistake. I've edited my answer. The provided answer is not correct. I've checked with Mathematica.
– José Carlos Santos
Nov 17 at 7:58






My mistake. I've edited my answer. The provided answer is not correct. I've checked with Mathematica.
– José Carlos Santos
Nov 17 at 7:58














Thank you for checking. I was scratching my head for a few seconds haha
– JulianAngussmith
Nov 17 at 8:03




Thank you for checking. I was scratching my head for a few seconds haha
– JulianAngussmith
Nov 17 at 8:03


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3002050%2fverification-of-laurent-series-for-the-function-fz-frac2z22-frac5%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

AnyDesk - Fatal Program Failure

How to calibrate 16:9 built-in touch-screen to a 4:3 resolution?

QoS: MAC-Priority for clients behind a repeater