Calculate $sum_{k=1}^n (-1)^{k+1} binom{n}{k}frac{1}{k}$











up vote
1
down vote

favorite












Calculate $sum_{k=1}^n (-1)^{k+1} binom{n}{k}frac{1}{k}$, I do not know hot get rid of that $k$, for me it is similar like $binom{n}{k}=frac{k}{n} binom{n-1}{k-1}$, do you have some idea?










share|cite|improve this question
























  • Compare with this question.
    – Dietrich Burde
    Nov 17 at 9:27















up vote
1
down vote

favorite












Calculate $sum_{k=1}^n (-1)^{k+1} binom{n}{k}frac{1}{k}$, I do not know hot get rid of that $k$, for me it is similar like $binom{n}{k}=frac{k}{n} binom{n-1}{k-1}$, do you have some idea?










share|cite|improve this question
























  • Compare with this question.
    – Dietrich Burde
    Nov 17 at 9:27













up vote
1
down vote

favorite









up vote
1
down vote

favorite











Calculate $sum_{k=1}^n (-1)^{k+1} binom{n}{k}frac{1}{k}$, I do not know hot get rid of that $k$, for me it is similar like $binom{n}{k}=frac{k}{n} binom{n-1}{k-1}$, do you have some idea?










share|cite|improve this question















Calculate $sum_{k=1}^n (-1)^{k+1} binom{n}{k}frac{1}{k}$, I do not know hot get rid of that $k$, for me it is similar like $binom{n}{k}=frac{k}{n} binom{n-1}{k-1}$, do you have some idea?







discrete-mathematics binomial-coefficients






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 17 at 9:37









Robert Z

91.1k1058129




91.1k1058129










asked Nov 17 at 9:26









Marko Škorić

69810




69810












  • Compare with this question.
    – Dietrich Burde
    Nov 17 at 9:27


















  • Compare with this question.
    – Dietrich Burde
    Nov 17 at 9:27
















Compare with this question.
– Dietrich Burde
Nov 17 at 9:27




Compare with this question.
– Dietrich Burde
Nov 17 at 9:27










3 Answers
3






active

oldest

votes

















up vote
2
down vote



accepted










Hint. There is no closed formula here. Compute the first few terms and compare them with the $n$th-harmonic number $H_n=sum_{k=1}^nfrac{1}{k}$. What can we conjecture?



P.S. BTW the linked sum $sum(-1)^k{nchoose k}frac{1}{k+1}$ is "similar" but quite much easier (it has a closed formula).






share|cite|improve this answer























  • it is the same but how to prove that
    – Marko Škorić
    Nov 17 at 9:37






  • 1




    You can try by induction or by an "integral" trick by considering $sum_{k=1}^n(-1)^k{nchoose k}x^{k-1}$.
    – Robert Z
    Nov 17 at 9:40










  • Actually, there is a closed formula: see answer below
    – G Cab
    Nov 17 at 15:01










  • @GCab Maybe we do not agree with the same definition of "closed formula". However it is true that Stirling numbers of the first kind can be written by using harmonic numbers. See en.wikipedia.org/wiki/…
    – Robert Z
    Nov 17 at 15:13


















up vote
1
down vote













We can write your sum as
$$
eqalign{
& f(n) = sumlimits_{k = 1}^n {left( { - 1} right)^{,k + 1} left( matrix{
n cr
k cr} right){1 over k}} = cr
& = sumlimits_{k = 0}^{n - 1} {left( { - 1} right)^{,k} left( matrix{
n cr
k + 1 cr} right){1 over {k + 1}}} = sumlimits_{k = 0}^infty {left( { - 1} right)^{,k} left( matrix{
n cr
k + 1 cr} right){1 over {k + 1}}} = cr
& = sumlimits_{k = 0}^infty {t_k } cr}
$$



and we can express it in terms of a Hypergeometric function, since
$$
eqalign{
& t_0 = left( matrix{
n cr
1 cr} right) = n cr
& {{t_{k + 1} } over {t_k }} = - {{n^{,underline {,k + 2,} } } over {left( {k + 2} right)left( {k + 2} right)!}}
{{left( {k + 1} right)left( {k + 1} right)!} over {n^{,underline {,k + 1,} } }} = cr
& = - {{left( {n - 1 - k} right)} over 1}{{left( {k + 1} right)} over {left( {k + 2} right)left( {k + 2} right)}}
= {{left( {k - n + 1} right)left( {k + 1} right)} over {left( {k + 2} right)left( {k + 2} right)}} cr}
$$



Then
$$
f(n) = n;{}_3F_2 left( {left. {matrix{
{ - n + 1,;1,;1} cr
{2,;2} cr
} ;} right|;1} right)
$$



Alternatively, we have that
$$
eqalign{
& f(n + 1) = sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
n + 1 cr
k cr} right){1 over k}} = cr
& = left( {sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
n cr
k cr} right){1 over k}} + sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
n cr
k - 1 cr} right){1 over k}} } right) = cr
& = left( {sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
n cr
k cr} right){1 over k}} + {1 over {n + 1}}sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
n + 1 cr
k cr} right)} } right) = cr
& = sumlimits_{k = 1}^n {left( { - 1} right)^{,k + 1} left( matrix{
n cr
k cr} right){1 over k}} - {1 over {n + 1}}left( {0^{,n + 1} - 1} right) = cr
& = f(n) + {1 over {n + 1}} cr}
$$

i.e.:
$$
left{ matrix{
f(0) = 0 hfill cr
f(1) = 1 hfill cr
f(n + 1) - f(n) = Delta f(n) = {1 over {n + 1}} hfill cr} right.
$$



or
$$
left{ matrix{
g(n) = n!f(n) hfill cr
g(0) = 0 hfill cr
g(1) = 1 hfill cr
g(n + 1) = left( {n + 1} right)f(n) + n! hfill cr} right.
$$

and this is the recurrence satified by
$$g(n)=left[ matrix{ n+1 cr 2 cr} right]$$
where $left[ matrix{ n cr m cr} right]$ represents the (unsigned) Stirling number of 1st kind.



Thus
$$ bbox[lightyellow] {
f(n) = sumlimits_{k = 1}^n {left( { - 1} right)^{,k + 1} binom{n}{k}{1 over k}}
= {1 over {n!}}left[ matrix{ n + 1 cr 2 cr} right]
}$$



Also refer to OEIS seq. A000254 .






share|cite|improve this answer






























    up vote
    0
    down vote













    This problem and its type appear at MSE regularly. Suppose we seek to
    compute



    $$S_n = sum_{k=1}^n {nchoose k} frac{(-1)^{k+1}}{k}.$$



    With this in mind we introduce the function



    $$f(z) = n! (-1)^{n+1} frac{1}{z^2} prod_{q=1}^n frac{1}{z-q}.$$



    We then obtain for $1le kle n$



    $$mathrm{Res}_{z=k} f(z) =
    (-1)^{n+1} frac{n!}{k^2} prod_{q=1}^{k-1} frac{1}{k-q}
    prod_{q=k+1}^n frac{1}{k-q}
    \ = (-1)^{n+1} frac{n!}{k}
    frac{1}{k!} frac{(-1)^{n-k}}{(n-k)!}
    = {nchoose k} frac{(-1)^{k+1}}{k}.$$



    This means that



    $$S_n = sum_{k=1}^n mathrm{Res}_{z=k} f(z)$$



    and since residues sum to zero we have



    $$S_n + mathrm{Res}_{z=0} f(z) + mathrm{Res}_{z=infty} f(z) = 0.$$



    We can compute the residue at infinity by inspection (it is zero) or
    more formally through



    $$mathrm{Res}_{z=infty}
    n! (-1)^{n+1} frac{1}{z^2} prod_{q=1}^n frac{1}{z-q}
    \ = - n! (-1)^{n+1} mathrm{Res}_{z=0} frac{1}{z^2}
    z^2 prod_{q=1}^n frac{1}{1/z-q}
    \ = - n! (-1)^{n+1} mathrm{Res}_{z=0}
    prod_{q=1}^n frac{z}{1-qz}
    \ = - n! (-1)^{n+1} mathrm{Res}_{z=0} z^n
    prod_{q=1}^n frac{1}{1-qz} = 0.$$



    We get for the residue at $z=0$ that



    $$mathrm{Res}_{z=0} f(z) =
    n! (-1)^{n+1}
    left. left(prod_{q=1}^n frac{1}{z-q}right)'right|_{z=0}
    \ = - n! (-1)^{n+1} left.
    left(prod_{q=1}^n frac{1}{z-q}right)
    sum_{q=1}^n frac{1}{z-q} right|_{z=0}
    \ = n! (-1)^n frac{(-1)^{n}}{n!} left(-H_{n}right)
    = -H_n.$$



    We thus have $S_n - H_n = 0$ or



    $$bbox[5px,border:2px solid #00A000]{
    S_n = H_n = sum_{k=1}^n frac{1}{k}.}$$






    share|cite|improve this answer





















      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3002131%2fcalculate-sum-k-1n-1k1-binomnk-frac1k%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      2
      down vote



      accepted










      Hint. There is no closed formula here. Compute the first few terms and compare them with the $n$th-harmonic number $H_n=sum_{k=1}^nfrac{1}{k}$. What can we conjecture?



      P.S. BTW the linked sum $sum(-1)^k{nchoose k}frac{1}{k+1}$ is "similar" but quite much easier (it has a closed formula).






      share|cite|improve this answer























      • it is the same but how to prove that
        – Marko Škorić
        Nov 17 at 9:37






      • 1




        You can try by induction or by an "integral" trick by considering $sum_{k=1}^n(-1)^k{nchoose k}x^{k-1}$.
        – Robert Z
        Nov 17 at 9:40










      • Actually, there is a closed formula: see answer below
        – G Cab
        Nov 17 at 15:01










      • @GCab Maybe we do not agree with the same definition of "closed formula". However it is true that Stirling numbers of the first kind can be written by using harmonic numbers. See en.wikipedia.org/wiki/…
        – Robert Z
        Nov 17 at 15:13















      up vote
      2
      down vote



      accepted










      Hint. There is no closed formula here. Compute the first few terms and compare them with the $n$th-harmonic number $H_n=sum_{k=1}^nfrac{1}{k}$. What can we conjecture?



      P.S. BTW the linked sum $sum(-1)^k{nchoose k}frac{1}{k+1}$ is "similar" but quite much easier (it has a closed formula).






      share|cite|improve this answer























      • it is the same but how to prove that
        – Marko Škorić
        Nov 17 at 9:37






      • 1




        You can try by induction or by an "integral" trick by considering $sum_{k=1}^n(-1)^k{nchoose k}x^{k-1}$.
        – Robert Z
        Nov 17 at 9:40










      • Actually, there is a closed formula: see answer below
        – G Cab
        Nov 17 at 15:01










      • @GCab Maybe we do not agree with the same definition of "closed formula". However it is true that Stirling numbers of the first kind can be written by using harmonic numbers. See en.wikipedia.org/wiki/…
        – Robert Z
        Nov 17 at 15:13













      up vote
      2
      down vote



      accepted







      up vote
      2
      down vote



      accepted






      Hint. There is no closed formula here. Compute the first few terms and compare them with the $n$th-harmonic number $H_n=sum_{k=1}^nfrac{1}{k}$. What can we conjecture?



      P.S. BTW the linked sum $sum(-1)^k{nchoose k}frac{1}{k+1}$ is "similar" but quite much easier (it has a closed formula).






      share|cite|improve this answer














      Hint. There is no closed formula here. Compute the first few terms and compare them with the $n$th-harmonic number $H_n=sum_{k=1}^nfrac{1}{k}$. What can we conjecture?



      P.S. BTW the linked sum $sum(-1)^k{nchoose k}frac{1}{k+1}$ is "similar" but quite much easier (it has a closed formula).







      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited Nov 17 at 9:38

























      answered Nov 17 at 9:32









      Robert Z

      91.1k1058129




      91.1k1058129












      • it is the same but how to prove that
        – Marko Škorić
        Nov 17 at 9:37






      • 1




        You can try by induction or by an "integral" trick by considering $sum_{k=1}^n(-1)^k{nchoose k}x^{k-1}$.
        – Robert Z
        Nov 17 at 9:40










      • Actually, there is a closed formula: see answer below
        – G Cab
        Nov 17 at 15:01










      • @GCab Maybe we do not agree with the same definition of "closed formula". However it is true that Stirling numbers of the first kind can be written by using harmonic numbers. See en.wikipedia.org/wiki/…
        – Robert Z
        Nov 17 at 15:13


















      • it is the same but how to prove that
        – Marko Škorić
        Nov 17 at 9:37






      • 1




        You can try by induction or by an "integral" trick by considering $sum_{k=1}^n(-1)^k{nchoose k}x^{k-1}$.
        – Robert Z
        Nov 17 at 9:40










      • Actually, there is a closed formula: see answer below
        – G Cab
        Nov 17 at 15:01










      • @GCab Maybe we do not agree with the same definition of "closed formula". However it is true that Stirling numbers of the first kind can be written by using harmonic numbers. See en.wikipedia.org/wiki/…
        – Robert Z
        Nov 17 at 15:13
















      it is the same but how to prove that
      – Marko Škorić
      Nov 17 at 9:37




      it is the same but how to prove that
      – Marko Škorić
      Nov 17 at 9:37




      1




      1




      You can try by induction or by an "integral" trick by considering $sum_{k=1}^n(-1)^k{nchoose k}x^{k-1}$.
      – Robert Z
      Nov 17 at 9:40




      You can try by induction or by an "integral" trick by considering $sum_{k=1}^n(-1)^k{nchoose k}x^{k-1}$.
      – Robert Z
      Nov 17 at 9:40












      Actually, there is a closed formula: see answer below
      – G Cab
      Nov 17 at 15:01




      Actually, there is a closed formula: see answer below
      – G Cab
      Nov 17 at 15:01












      @GCab Maybe we do not agree with the same definition of "closed formula". However it is true that Stirling numbers of the first kind can be written by using harmonic numbers. See en.wikipedia.org/wiki/…
      – Robert Z
      Nov 17 at 15:13




      @GCab Maybe we do not agree with the same definition of "closed formula". However it is true that Stirling numbers of the first kind can be written by using harmonic numbers. See en.wikipedia.org/wiki/…
      – Robert Z
      Nov 17 at 15:13










      up vote
      1
      down vote













      We can write your sum as
      $$
      eqalign{
      & f(n) = sumlimits_{k = 1}^n {left( { - 1} right)^{,k + 1} left( matrix{
      n cr
      k cr} right){1 over k}} = cr
      & = sumlimits_{k = 0}^{n - 1} {left( { - 1} right)^{,k} left( matrix{
      n cr
      k + 1 cr} right){1 over {k + 1}}} = sumlimits_{k = 0}^infty {left( { - 1} right)^{,k} left( matrix{
      n cr
      k + 1 cr} right){1 over {k + 1}}} = cr
      & = sumlimits_{k = 0}^infty {t_k } cr}
      $$



      and we can express it in terms of a Hypergeometric function, since
      $$
      eqalign{
      & t_0 = left( matrix{
      n cr
      1 cr} right) = n cr
      & {{t_{k + 1} } over {t_k }} = - {{n^{,underline {,k + 2,} } } over {left( {k + 2} right)left( {k + 2} right)!}}
      {{left( {k + 1} right)left( {k + 1} right)!} over {n^{,underline {,k + 1,} } }} = cr
      & = - {{left( {n - 1 - k} right)} over 1}{{left( {k + 1} right)} over {left( {k + 2} right)left( {k + 2} right)}}
      = {{left( {k - n + 1} right)left( {k + 1} right)} over {left( {k + 2} right)left( {k + 2} right)}} cr}
      $$



      Then
      $$
      f(n) = n;{}_3F_2 left( {left. {matrix{
      { - n + 1,;1,;1} cr
      {2,;2} cr
      } ;} right|;1} right)
      $$



      Alternatively, we have that
      $$
      eqalign{
      & f(n + 1) = sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
      n + 1 cr
      k cr} right){1 over k}} = cr
      & = left( {sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
      n cr
      k cr} right){1 over k}} + sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
      n cr
      k - 1 cr} right){1 over k}} } right) = cr
      & = left( {sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
      n cr
      k cr} right){1 over k}} + {1 over {n + 1}}sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
      n + 1 cr
      k cr} right)} } right) = cr
      & = sumlimits_{k = 1}^n {left( { - 1} right)^{,k + 1} left( matrix{
      n cr
      k cr} right){1 over k}} - {1 over {n + 1}}left( {0^{,n + 1} - 1} right) = cr
      & = f(n) + {1 over {n + 1}} cr}
      $$

      i.e.:
      $$
      left{ matrix{
      f(0) = 0 hfill cr
      f(1) = 1 hfill cr
      f(n + 1) - f(n) = Delta f(n) = {1 over {n + 1}} hfill cr} right.
      $$



      or
      $$
      left{ matrix{
      g(n) = n!f(n) hfill cr
      g(0) = 0 hfill cr
      g(1) = 1 hfill cr
      g(n + 1) = left( {n + 1} right)f(n) + n! hfill cr} right.
      $$

      and this is the recurrence satified by
      $$g(n)=left[ matrix{ n+1 cr 2 cr} right]$$
      where $left[ matrix{ n cr m cr} right]$ represents the (unsigned) Stirling number of 1st kind.



      Thus
      $$ bbox[lightyellow] {
      f(n) = sumlimits_{k = 1}^n {left( { - 1} right)^{,k + 1} binom{n}{k}{1 over k}}
      = {1 over {n!}}left[ matrix{ n + 1 cr 2 cr} right]
      }$$



      Also refer to OEIS seq. A000254 .






      share|cite|improve this answer



























        up vote
        1
        down vote













        We can write your sum as
        $$
        eqalign{
        & f(n) = sumlimits_{k = 1}^n {left( { - 1} right)^{,k + 1} left( matrix{
        n cr
        k cr} right){1 over k}} = cr
        & = sumlimits_{k = 0}^{n - 1} {left( { - 1} right)^{,k} left( matrix{
        n cr
        k + 1 cr} right){1 over {k + 1}}} = sumlimits_{k = 0}^infty {left( { - 1} right)^{,k} left( matrix{
        n cr
        k + 1 cr} right){1 over {k + 1}}} = cr
        & = sumlimits_{k = 0}^infty {t_k } cr}
        $$



        and we can express it in terms of a Hypergeometric function, since
        $$
        eqalign{
        & t_0 = left( matrix{
        n cr
        1 cr} right) = n cr
        & {{t_{k + 1} } over {t_k }} = - {{n^{,underline {,k + 2,} } } over {left( {k + 2} right)left( {k + 2} right)!}}
        {{left( {k + 1} right)left( {k + 1} right)!} over {n^{,underline {,k + 1,} } }} = cr
        & = - {{left( {n - 1 - k} right)} over 1}{{left( {k + 1} right)} over {left( {k + 2} right)left( {k + 2} right)}}
        = {{left( {k - n + 1} right)left( {k + 1} right)} over {left( {k + 2} right)left( {k + 2} right)}} cr}
        $$



        Then
        $$
        f(n) = n;{}_3F_2 left( {left. {matrix{
        { - n + 1,;1,;1} cr
        {2,;2} cr
        } ;} right|;1} right)
        $$



        Alternatively, we have that
        $$
        eqalign{
        & f(n + 1) = sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
        n + 1 cr
        k cr} right){1 over k}} = cr
        & = left( {sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
        n cr
        k cr} right){1 over k}} + sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
        n cr
        k - 1 cr} right){1 over k}} } right) = cr
        & = left( {sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
        n cr
        k cr} right){1 over k}} + {1 over {n + 1}}sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
        n + 1 cr
        k cr} right)} } right) = cr
        & = sumlimits_{k = 1}^n {left( { - 1} right)^{,k + 1} left( matrix{
        n cr
        k cr} right){1 over k}} - {1 over {n + 1}}left( {0^{,n + 1} - 1} right) = cr
        & = f(n) + {1 over {n + 1}} cr}
        $$

        i.e.:
        $$
        left{ matrix{
        f(0) = 0 hfill cr
        f(1) = 1 hfill cr
        f(n + 1) - f(n) = Delta f(n) = {1 over {n + 1}} hfill cr} right.
        $$



        or
        $$
        left{ matrix{
        g(n) = n!f(n) hfill cr
        g(0) = 0 hfill cr
        g(1) = 1 hfill cr
        g(n + 1) = left( {n + 1} right)f(n) + n! hfill cr} right.
        $$

        and this is the recurrence satified by
        $$g(n)=left[ matrix{ n+1 cr 2 cr} right]$$
        where $left[ matrix{ n cr m cr} right]$ represents the (unsigned) Stirling number of 1st kind.



        Thus
        $$ bbox[lightyellow] {
        f(n) = sumlimits_{k = 1}^n {left( { - 1} right)^{,k + 1} binom{n}{k}{1 over k}}
        = {1 over {n!}}left[ matrix{ n + 1 cr 2 cr} right]
        }$$



        Also refer to OEIS seq. A000254 .






        share|cite|improve this answer

























          up vote
          1
          down vote










          up vote
          1
          down vote









          We can write your sum as
          $$
          eqalign{
          & f(n) = sumlimits_{k = 1}^n {left( { - 1} right)^{,k + 1} left( matrix{
          n cr
          k cr} right){1 over k}} = cr
          & = sumlimits_{k = 0}^{n - 1} {left( { - 1} right)^{,k} left( matrix{
          n cr
          k + 1 cr} right){1 over {k + 1}}} = sumlimits_{k = 0}^infty {left( { - 1} right)^{,k} left( matrix{
          n cr
          k + 1 cr} right){1 over {k + 1}}} = cr
          & = sumlimits_{k = 0}^infty {t_k } cr}
          $$



          and we can express it in terms of a Hypergeometric function, since
          $$
          eqalign{
          & t_0 = left( matrix{
          n cr
          1 cr} right) = n cr
          & {{t_{k + 1} } over {t_k }} = - {{n^{,underline {,k + 2,} } } over {left( {k + 2} right)left( {k + 2} right)!}}
          {{left( {k + 1} right)left( {k + 1} right)!} over {n^{,underline {,k + 1,} } }} = cr
          & = - {{left( {n - 1 - k} right)} over 1}{{left( {k + 1} right)} over {left( {k + 2} right)left( {k + 2} right)}}
          = {{left( {k - n + 1} right)left( {k + 1} right)} over {left( {k + 2} right)left( {k + 2} right)}} cr}
          $$



          Then
          $$
          f(n) = n;{}_3F_2 left( {left. {matrix{
          { - n + 1,;1,;1} cr
          {2,;2} cr
          } ;} right|;1} right)
          $$



          Alternatively, we have that
          $$
          eqalign{
          & f(n + 1) = sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
          n + 1 cr
          k cr} right){1 over k}} = cr
          & = left( {sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
          n cr
          k cr} right){1 over k}} + sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
          n cr
          k - 1 cr} right){1 over k}} } right) = cr
          & = left( {sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
          n cr
          k cr} right){1 over k}} + {1 over {n + 1}}sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
          n + 1 cr
          k cr} right)} } right) = cr
          & = sumlimits_{k = 1}^n {left( { - 1} right)^{,k + 1} left( matrix{
          n cr
          k cr} right){1 over k}} - {1 over {n + 1}}left( {0^{,n + 1} - 1} right) = cr
          & = f(n) + {1 over {n + 1}} cr}
          $$

          i.e.:
          $$
          left{ matrix{
          f(0) = 0 hfill cr
          f(1) = 1 hfill cr
          f(n + 1) - f(n) = Delta f(n) = {1 over {n + 1}} hfill cr} right.
          $$



          or
          $$
          left{ matrix{
          g(n) = n!f(n) hfill cr
          g(0) = 0 hfill cr
          g(1) = 1 hfill cr
          g(n + 1) = left( {n + 1} right)f(n) + n! hfill cr} right.
          $$

          and this is the recurrence satified by
          $$g(n)=left[ matrix{ n+1 cr 2 cr} right]$$
          where $left[ matrix{ n cr m cr} right]$ represents the (unsigned) Stirling number of 1st kind.



          Thus
          $$ bbox[lightyellow] {
          f(n) = sumlimits_{k = 1}^n {left( { - 1} right)^{,k + 1} binom{n}{k}{1 over k}}
          = {1 over {n!}}left[ matrix{ n + 1 cr 2 cr} right]
          }$$



          Also refer to OEIS seq. A000254 .






          share|cite|improve this answer














          We can write your sum as
          $$
          eqalign{
          & f(n) = sumlimits_{k = 1}^n {left( { - 1} right)^{,k + 1} left( matrix{
          n cr
          k cr} right){1 over k}} = cr
          & = sumlimits_{k = 0}^{n - 1} {left( { - 1} right)^{,k} left( matrix{
          n cr
          k + 1 cr} right){1 over {k + 1}}} = sumlimits_{k = 0}^infty {left( { - 1} right)^{,k} left( matrix{
          n cr
          k + 1 cr} right){1 over {k + 1}}} = cr
          & = sumlimits_{k = 0}^infty {t_k } cr}
          $$



          and we can express it in terms of a Hypergeometric function, since
          $$
          eqalign{
          & t_0 = left( matrix{
          n cr
          1 cr} right) = n cr
          & {{t_{k + 1} } over {t_k }} = - {{n^{,underline {,k + 2,} } } over {left( {k + 2} right)left( {k + 2} right)!}}
          {{left( {k + 1} right)left( {k + 1} right)!} over {n^{,underline {,k + 1,} } }} = cr
          & = - {{left( {n - 1 - k} right)} over 1}{{left( {k + 1} right)} over {left( {k + 2} right)left( {k + 2} right)}}
          = {{left( {k - n + 1} right)left( {k + 1} right)} over {left( {k + 2} right)left( {k + 2} right)}} cr}
          $$



          Then
          $$
          f(n) = n;{}_3F_2 left( {left. {matrix{
          { - n + 1,;1,;1} cr
          {2,;2} cr
          } ;} right|;1} right)
          $$



          Alternatively, we have that
          $$
          eqalign{
          & f(n + 1) = sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
          n + 1 cr
          k cr} right){1 over k}} = cr
          & = left( {sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
          n cr
          k cr} right){1 over k}} + sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
          n cr
          k - 1 cr} right){1 over k}} } right) = cr
          & = left( {sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
          n cr
          k cr} right){1 over k}} + {1 over {n + 1}}sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
          n + 1 cr
          k cr} right)} } right) = cr
          & = sumlimits_{k = 1}^n {left( { - 1} right)^{,k + 1} left( matrix{
          n cr
          k cr} right){1 over k}} - {1 over {n + 1}}left( {0^{,n + 1} - 1} right) = cr
          & = f(n) + {1 over {n + 1}} cr}
          $$

          i.e.:
          $$
          left{ matrix{
          f(0) = 0 hfill cr
          f(1) = 1 hfill cr
          f(n + 1) - f(n) = Delta f(n) = {1 over {n + 1}} hfill cr} right.
          $$



          or
          $$
          left{ matrix{
          g(n) = n!f(n) hfill cr
          g(0) = 0 hfill cr
          g(1) = 1 hfill cr
          g(n + 1) = left( {n + 1} right)f(n) + n! hfill cr} right.
          $$

          and this is the recurrence satified by
          $$g(n)=left[ matrix{ n+1 cr 2 cr} right]$$
          where $left[ matrix{ n cr m cr} right]$ represents the (unsigned) Stirling number of 1st kind.



          Thus
          $$ bbox[lightyellow] {
          f(n) = sumlimits_{k = 1}^n {left( { - 1} right)^{,k + 1} binom{n}{k}{1 over k}}
          = {1 over {n!}}left[ matrix{ n + 1 cr 2 cr} right]
          }$$



          Also refer to OEIS seq. A000254 .







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Nov 17 at 14:59

























          answered Nov 17 at 10:16









          G Cab

          17.1k31237




          17.1k31237






















              up vote
              0
              down vote













              This problem and its type appear at MSE regularly. Suppose we seek to
              compute



              $$S_n = sum_{k=1}^n {nchoose k} frac{(-1)^{k+1}}{k}.$$



              With this in mind we introduce the function



              $$f(z) = n! (-1)^{n+1} frac{1}{z^2} prod_{q=1}^n frac{1}{z-q}.$$



              We then obtain for $1le kle n$



              $$mathrm{Res}_{z=k} f(z) =
              (-1)^{n+1} frac{n!}{k^2} prod_{q=1}^{k-1} frac{1}{k-q}
              prod_{q=k+1}^n frac{1}{k-q}
              \ = (-1)^{n+1} frac{n!}{k}
              frac{1}{k!} frac{(-1)^{n-k}}{(n-k)!}
              = {nchoose k} frac{(-1)^{k+1}}{k}.$$



              This means that



              $$S_n = sum_{k=1}^n mathrm{Res}_{z=k} f(z)$$



              and since residues sum to zero we have



              $$S_n + mathrm{Res}_{z=0} f(z) + mathrm{Res}_{z=infty} f(z) = 0.$$



              We can compute the residue at infinity by inspection (it is zero) or
              more formally through



              $$mathrm{Res}_{z=infty}
              n! (-1)^{n+1} frac{1}{z^2} prod_{q=1}^n frac{1}{z-q}
              \ = - n! (-1)^{n+1} mathrm{Res}_{z=0} frac{1}{z^2}
              z^2 prod_{q=1}^n frac{1}{1/z-q}
              \ = - n! (-1)^{n+1} mathrm{Res}_{z=0}
              prod_{q=1}^n frac{z}{1-qz}
              \ = - n! (-1)^{n+1} mathrm{Res}_{z=0} z^n
              prod_{q=1}^n frac{1}{1-qz} = 0.$$



              We get for the residue at $z=0$ that



              $$mathrm{Res}_{z=0} f(z) =
              n! (-1)^{n+1}
              left. left(prod_{q=1}^n frac{1}{z-q}right)'right|_{z=0}
              \ = - n! (-1)^{n+1} left.
              left(prod_{q=1}^n frac{1}{z-q}right)
              sum_{q=1}^n frac{1}{z-q} right|_{z=0}
              \ = n! (-1)^n frac{(-1)^{n}}{n!} left(-H_{n}right)
              = -H_n.$$



              We thus have $S_n - H_n = 0$ or



              $$bbox[5px,border:2px solid #00A000]{
              S_n = H_n = sum_{k=1}^n frac{1}{k}.}$$






              share|cite|improve this answer

























                up vote
                0
                down vote













                This problem and its type appear at MSE regularly. Suppose we seek to
                compute



                $$S_n = sum_{k=1}^n {nchoose k} frac{(-1)^{k+1}}{k}.$$



                With this in mind we introduce the function



                $$f(z) = n! (-1)^{n+1} frac{1}{z^2} prod_{q=1}^n frac{1}{z-q}.$$



                We then obtain for $1le kle n$



                $$mathrm{Res}_{z=k} f(z) =
                (-1)^{n+1} frac{n!}{k^2} prod_{q=1}^{k-1} frac{1}{k-q}
                prod_{q=k+1}^n frac{1}{k-q}
                \ = (-1)^{n+1} frac{n!}{k}
                frac{1}{k!} frac{(-1)^{n-k}}{(n-k)!}
                = {nchoose k} frac{(-1)^{k+1}}{k}.$$



                This means that



                $$S_n = sum_{k=1}^n mathrm{Res}_{z=k} f(z)$$



                and since residues sum to zero we have



                $$S_n + mathrm{Res}_{z=0} f(z) + mathrm{Res}_{z=infty} f(z) = 0.$$



                We can compute the residue at infinity by inspection (it is zero) or
                more formally through



                $$mathrm{Res}_{z=infty}
                n! (-1)^{n+1} frac{1}{z^2} prod_{q=1}^n frac{1}{z-q}
                \ = - n! (-1)^{n+1} mathrm{Res}_{z=0} frac{1}{z^2}
                z^2 prod_{q=1}^n frac{1}{1/z-q}
                \ = - n! (-1)^{n+1} mathrm{Res}_{z=0}
                prod_{q=1}^n frac{z}{1-qz}
                \ = - n! (-1)^{n+1} mathrm{Res}_{z=0} z^n
                prod_{q=1}^n frac{1}{1-qz} = 0.$$



                We get for the residue at $z=0$ that



                $$mathrm{Res}_{z=0} f(z) =
                n! (-1)^{n+1}
                left. left(prod_{q=1}^n frac{1}{z-q}right)'right|_{z=0}
                \ = - n! (-1)^{n+1} left.
                left(prod_{q=1}^n frac{1}{z-q}right)
                sum_{q=1}^n frac{1}{z-q} right|_{z=0}
                \ = n! (-1)^n frac{(-1)^{n}}{n!} left(-H_{n}right)
                = -H_n.$$



                We thus have $S_n - H_n = 0$ or



                $$bbox[5px,border:2px solid #00A000]{
                S_n = H_n = sum_{k=1}^n frac{1}{k}.}$$






                share|cite|improve this answer























                  up vote
                  0
                  down vote










                  up vote
                  0
                  down vote









                  This problem and its type appear at MSE regularly. Suppose we seek to
                  compute



                  $$S_n = sum_{k=1}^n {nchoose k} frac{(-1)^{k+1}}{k}.$$



                  With this in mind we introduce the function



                  $$f(z) = n! (-1)^{n+1} frac{1}{z^2} prod_{q=1}^n frac{1}{z-q}.$$



                  We then obtain for $1le kle n$



                  $$mathrm{Res}_{z=k} f(z) =
                  (-1)^{n+1} frac{n!}{k^2} prod_{q=1}^{k-1} frac{1}{k-q}
                  prod_{q=k+1}^n frac{1}{k-q}
                  \ = (-1)^{n+1} frac{n!}{k}
                  frac{1}{k!} frac{(-1)^{n-k}}{(n-k)!}
                  = {nchoose k} frac{(-1)^{k+1}}{k}.$$



                  This means that



                  $$S_n = sum_{k=1}^n mathrm{Res}_{z=k} f(z)$$



                  and since residues sum to zero we have



                  $$S_n + mathrm{Res}_{z=0} f(z) + mathrm{Res}_{z=infty} f(z) = 0.$$



                  We can compute the residue at infinity by inspection (it is zero) or
                  more formally through



                  $$mathrm{Res}_{z=infty}
                  n! (-1)^{n+1} frac{1}{z^2} prod_{q=1}^n frac{1}{z-q}
                  \ = - n! (-1)^{n+1} mathrm{Res}_{z=0} frac{1}{z^2}
                  z^2 prod_{q=1}^n frac{1}{1/z-q}
                  \ = - n! (-1)^{n+1} mathrm{Res}_{z=0}
                  prod_{q=1}^n frac{z}{1-qz}
                  \ = - n! (-1)^{n+1} mathrm{Res}_{z=0} z^n
                  prod_{q=1}^n frac{1}{1-qz} = 0.$$



                  We get for the residue at $z=0$ that



                  $$mathrm{Res}_{z=0} f(z) =
                  n! (-1)^{n+1}
                  left. left(prod_{q=1}^n frac{1}{z-q}right)'right|_{z=0}
                  \ = - n! (-1)^{n+1} left.
                  left(prod_{q=1}^n frac{1}{z-q}right)
                  sum_{q=1}^n frac{1}{z-q} right|_{z=0}
                  \ = n! (-1)^n frac{(-1)^{n}}{n!} left(-H_{n}right)
                  = -H_n.$$



                  We thus have $S_n - H_n = 0$ or



                  $$bbox[5px,border:2px solid #00A000]{
                  S_n = H_n = sum_{k=1}^n frac{1}{k}.}$$






                  share|cite|improve this answer












                  This problem and its type appear at MSE regularly. Suppose we seek to
                  compute



                  $$S_n = sum_{k=1}^n {nchoose k} frac{(-1)^{k+1}}{k}.$$



                  With this in mind we introduce the function



                  $$f(z) = n! (-1)^{n+1} frac{1}{z^2} prod_{q=1}^n frac{1}{z-q}.$$



                  We then obtain for $1le kle n$



                  $$mathrm{Res}_{z=k} f(z) =
                  (-1)^{n+1} frac{n!}{k^2} prod_{q=1}^{k-1} frac{1}{k-q}
                  prod_{q=k+1}^n frac{1}{k-q}
                  \ = (-1)^{n+1} frac{n!}{k}
                  frac{1}{k!} frac{(-1)^{n-k}}{(n-k)!}
                  = {nchoose k} frac{(-1)^{k+1}}{k}.$$



                  This means that



                  $$S_n = sum_{k=1}^n mathrm{Res}_{z=k} f(z)$$



                  and since residues sum to zero we have



                  $$S_n + mathrm{Res}_{z=0} f(z) + mathrm{Res}_{z=infty} f(z) = 0.$$



                  We can compute the residue at infinity by inspection (it is zero) or
                  more formally through



                  $$mathrm{Res}_{z=infty}
                  n! (-1)^{n+1} frac{1}{z^2} prod_{q=1}^n frac{1}{z-q}
                  \ = - n! (-1)^{n+1} mathrm{Res}_{z=0} frac{1}{z^2}
                  z^2 prod_{q=1}^n frac{1}{1/z-q}
                  \ = - n! (-1)^{n+1} mathrm{Res}_{z=0}
                  prod_{q=1}^n frac{z}{1-qz}
                  \ = - n! (-1)^{n+1} mathrm{Res}_{z=0} z^n
                  prod_{q=1}^n frac{1}{1-qz} = 0.$$



                  We get for the residue at $z=0$ that



                  $$mathrm{Res}_{z=0} f(z) =
                  n! (-1)^{n+1}
                  left. left(prod_{q=1}^n frac{1}{z-q}right)'right|_{z=0}
                  \ = - n! (-1)^{n+1} left.
                  left(prod_{q=1}^n frac{1}{z-q}right)
                  sum_{q=1}^n frac{1}{z-q} right|_{z=0}
                  \ = n! (-1)^n frac{(-1)^{n}}{n!} left(-H_{n}right)
                  = -H_n.$$



                  We thus have $S_n - H_n = 0$ or



                  $$bbox[5px,border:2px solid #00A000]{
                  S_n = H_n = sum_{k=1}^n frac{1}{k}.}$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Nov 17 at 15:05









                  Marko Riedel

                  38.5k339106




                  38.5k339106






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.





                      Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                      Please pay close attention to the following guidance:


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3002131%2fcalculate-sum-k-1n-1k1-binomnk-frac1k%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      AnyDesk - Fatal Program Failure

                      How to calibrate 16:9 built-in touch-screen to a 4:3 resolution?

                      QoS: MAC-Priority for clients behind a repeater