Calculate $sum_{k=1}^n (-1)^{k+1} binom{n}{k}frac{1}{k}$
up vote
1
down vote
favorite
Calculate $sum_{k=1}^n (-1)^{k+1} binom{n}{k}frac{1}{k}$, I do not know hot get rid of that $k$, for me it is similar like $binom{n}{k}=frac{k}{n} binom{n-1}{k-1}$, do you have some idea?
discrete-mathematics binomial-coefficients
add a comment |
up vote
1
down vote
favorite
Calculate $sum_{k=1}^n (-1)^{k+1} binom{n}{k}frac{1}{k}$, I do not know hot get rid of that $k$, for me it is similar like $binom{n}{k}=frac{k}{n} binom{n-1}{k-1}$, do you have some idea?
discrete-mathematics binomial-coefficients
Compare with this question.
– Dietrich Burde
Nov 17 at 9:27
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Calculate $sum_{k=1}^n (-1)^{k+1} binom{n}{k}frac{1}{k}$, I do not know hot get rid of that $k$, for me it is similar like $binom{n}{k}=frac{k}{n} binom{n-1}{k-1}$, do you have some idea?
discrete-mathematics binomial-coefficients
Calculate $sum_{k=1}^n (-1)^{k+1} binom{n}{k}frac{1}{k}$, I do not know hot get rid of that $k$, for me it is similar like $binom{n}{k}=frac{k}{n} binom{n-1}{k-1}$, do you have some idea?
discrete-mathematics binomial-coefficients
discrete-mathematics binomial-coefficients
edited Nov 17 at 9:37
Robert Z
91.1k1058129
91.1k1058129
asked Nov 17 at 9:26
Marko Škorić
69810
69810
Compare with this question.
– Dietrich Burde
Nov 17 at 9:27
add a comment |
Compare with this question.
– Dietrich Burde
Nov 17 at 9:27
Compare with this question.
– Dietrich Burde
Nov 17 at 9:27
Compare with this question.
– Dietrich Burde
Nov 17 at 9:27
add a comment |
3 Answers
3
active
oldest
votes
up vote
2
down vote
accepted
Hint. There is no closed formula here. Compute the first few terms and compare them with the $n$th-harmonic number $H_n=sum_{k=1}^nfrac{1}{k}$. What can we conjecture?
P.S. BTW the linked sum $sum(-1)^k{nchoose k}frac{1}{k+1}$ is "similar" but quite much easier (it has a closed formula).
it is the same but how to prove that
– Marko Škorić
Nov 17 at 9:37
1
You can try by induction or by an "integral" trick by considering $sum_{k=1}^n(-1)^k{nchoose k}x^{k-1}$.
– Robert Z
Nov 17 at 9:40
Actually, there is a closed formula: see answer below
– G Cab
Nov 17 at 15:01
@GCab Maybe we do not agree with the same definition of "closed formula". However it is true that Stirling numbers of the first kind can be written by using harmonic numbers. See en.wikipedia.org/wiki/…
– Robert Z
Nov 17 at 15:13
add a comment |
up vote
1
down vote
We can write your sum as
$$
eqalign{
& f(n) = sumlimits_{k = 1}^n {left( { - 1} right)^{,k + 1} left( matrix{
n cr
k cr} right){1 over k}} = cr
& = sumlimits_{k = 0}^{n - 1} {left( { - 1} right)^{,k} left( matrix{
n cr
k + 1 cr} right){1 over {k + 1}}} = sumlimits_{k = 0}^infty {left( { - 1} right)^{,k} left( matrix{
n cr
k + 1 cr} right){1 over {k + 1}}} = cr
& = sumlimits_{k = 0}^infty {t_k } cr}
$$
and we can express it in terms of a Hypergeometric function, since
$$
eqalign{
& t_0 = left( matrix{
n cr
1 cr} right) = n cr
& {{t_{k + 1} } over {t_k }} = - {{n^{,underline {,k + 2,} } } over {left( {k + 2} right)left( {k + 2} right)!}}
{{left( {k + 1} right)left( {k + 1} right)!} over {n^{,underline {,k + 1,} } }} = cr
& = - {{left( {n - 1 - k} right)} over 1}{{left( {k + 1} right)} over {left( {k + 2} right)left( {k + 2} right)}}
= {{left( {k - n + 1} right)left( {k + 1} right)} over {left( {k + 2} right)left( {k + 2} right)}} cr}
$$
Then
$$
f(n) = n;{}_3F_2 left( {left. {matrix{
{ - n + 1,;1,;1} cr
{2,;2} cr
} ;} right|;1} right)
$$
Alternatively, we have that
$$
eqalign{
& f(n + 1) = sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
n + 1 cr
k cr} right){1 over k}} = cr
& = left( {sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
n cr
k cr} right){1 over k}} + sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
n cr
k - 1 cr} right){1 over k}} } right) = cr
& = left( {sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
n cr
k cr} right){1 over k}} + {1 over {n + 1}}sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
n + 1 cr
k cr} right)} } right) = cr
& = sumlimits_{k = 1}^n {left( { - 1} right)^{,k + 1} left( matrix{
n cr
k cr} right){1 over k}} - {1 over {n + 1}}left( {0^{,n + 1} - 1} right) = cr
& = f(n) + {1 over {n + 1}} cr}
$$
i.e.:
$$
left{ matrix{
f(0) = 0 hfill cr
f(1) = 1 hfill cr
f(n + 1) - f(n) = Delta f(n) = {1 over {n + 1}} hfill cr} right.
$$
or
$$
left{ matrix{
g(n) = n!f(n) hfill cr
g(0) = 0 hfill cr
g(1) = 1 hfill cr
g(n + 1) = left( {n + 1} right)f(n) + n! hfill cr} right.
$$
and this is the recurrence satified by
$$g(n)=left[ matrix{ n+1 cr 2 cr} right]$$
where $left[ matrix{ n cr m cr} right]$ represents the (unsigned) Stirling number of 1st kind.
Thus
$$ bbox[lightyellow] {
f(n) = sumlimits_{k = 1}^n {left( { - 1} right)^{,k + 1} binom{n}{k}{1 over k}}
= {1 over {n!}}left[ matrix{ n + 1 cr 2 cr} right]
}$$
Also refer to OEIS seq. A000254 .
add a comment |
up vote
0
down vote
This problem and its type appear at MSE regularly. Suppose we seek to
compute
$$S_n = sum_{k=1}^n {nchoose k} frac{(-1)^{k+1}}{k}.$$
With this in mind we introduce the function
$$f(z) = n! (-1)^{n+1} frac{1}{z^2} prod_{q=1}^n frac{1}{z-q}.$$
We then obtain for $1le kle n$
$$mathrm{Res}_{z=k} f(z) =
(-1)^{n+1} frac{n!}{k^2} prod_{q=1}^{k-1} frac{1}{k-q}
prod_{q=k+1}^n frac{1}{k-q}
\ = (-1)^{n+1} frac{n!}{k}
frac{1}{k!} frac{(-1)^{n-k}}{(n-k)!}
= {nchoose k} frac{(-1)^{k+1}}{k}.$$
This means that
$$S_n = sum_{k=1}^n mathrm{Res}_{z=k} f(z)$$
and since residues sum to zero we have
$$S_n + mathrm{Res}_{z=0} f(z) + mathrm{Res}_{z=infty} f(z) = 0.$$
We can compute the residue at infinity by inspection (it is zero) or
more formally through
$$mathrm{Res}_{z=infty}
n! (-1)^{n+1} frac{1}{z^2} prod_{q=1}^n frac{1}{z-q}
\ = - n! (-1)^{n+1} mathrm{Res}_{z=0} frac{1}{z^2}
z^2 prod_{q=1}^n frac{1}{1/z-q}
\ = - n! (-1)^{n+1} mathrm{Res}_{z=0}
prod_{q=1}^n frac{z}{1-qz}
\ = - n! (-1)^{n+1} mathrm{Res}_{z=0} z^n
prod_{q=1}^n frac{1}{1-qz} = 0.$$
We get for the residue at $z=0$ that
$$mathrm{Res}_{z=0} f(z) =
n! (-1)^{n+1}
left. left(prod_{q=1}^n frac{1}{z-q}right)'right|_{z=0}
\ = - n! (-1)^{n+1} left.
left(prod_{q=1}^n frac{1}{z-q}right)
sum_{q=1}^n frac{1}{z-q} right|_{z=0}
\ = n! (-1)^n frac{(-1)^{n}}{n!} left(-H_{n}right)
= -H_n.$$
We thus have $S_n - H_n = 0$ or
$$bbox[5px,border:2px solid #00A000]{
S_n = H_n = sum_{k=1}^n frac{1}{k}.}$$
add a comment |
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
Hint. There is no closed formula here. Compute the first few terms and compare them with the $n$th-harmonic number $H_n=sum_{k=1}^nfrac{1}{k}$. What can we conjecture?
P.S. BTW the linked sum $sum(-1)^k{nchoose k}frac{1}{k+1}$ is "similar" but quite much easier (it has a closed formula).
it is the same but how to prove that
– Marko Škorić
Nov 17 at 9:37
1
You can try by induction or by an "integral" trick by considering $sum_{k=1}^n(-1)^k{nchoose k}x^{k-1}$.
– Robert Z
Nov 17 at 9:40
Actually, there is a closed formula: see answer below
– G Cab
Nov 17 at 15:01
@GCab Maybe we do not agree with the same definition of "closed formula". However it is true that Stirling numbers of the first kind can be written by using harmonic numbers. See en.wikipedia.org/wiki/…
– Robert Z
Nov 17 at 15:13
add a comment |
up vote
2
down vote
accepted
Hint. There is no closed formula here. Compute the first few terms and compare them with the $n$th-harmonic number $H_n=sum_{k=1}^nfrac{1}{k}$. What can we conjecture?
P.S. BTW the linked sum $sum(-1)^k{nchoose k}frac{1}{k+1}$ is "similar" but quite much easier (it has a closed formula).
it is the same but how to prove that
– Marko Škorić
Nov 17 at 9:37
1
You can try by induction or by an "integral" trick by considering $sum_{k=1}^n(-1)^k{nchoose k}x^{k-1}$.
– Robert Z
Nov 17 at 9:40
Actually, there is a closed formula: see answer below
– G Cab
Nov 17 at 15:01
@GCab Maybe we do not agree with the same definition of "closed formula". However it is true that Stirling numbers of the first kind can be written by using harmonic numbers. See en.wikipedia.org/wiki/…
– Robert Z
Nov 17 at 15:13
add a comment |
up vote
2
down vote
accepted
up vote
2
down vote
accepted
Hint. There is no closed formula here. Compute the first few terms and compare them with the $n$th-harmonic number $H_n=sum_{k=1}^nfrac{1}{k}$. What can we conjecture?
P.S. BTW the linked sum $sum(-1)^k{nchoose k}frac{1}{k+1}$ is "similar" but quite much easier (it has a closed formula).
Hint. There is no closed formula here. Compute the first few terms and compare them with the $n$th-harmonic number $H_n=sum_{k=1}^nfrac{1}{k}$. What can we conjecture?
P.S. BTW the linked sum $sum(-1)^k{nchoose k}frac{1}{k+1}$ is "similar" but quite much easier (it has a closed formula).
edited Nov 17 at 9:38
answered Nov 17 at 9:32
Robert Z
91.1k1058129
91.1k1058129
it is the same but how to prove that
– Marko Škorić
Nov 17 at 9:37
1
You can try by induction or by an "integral" trick by considering $sum_{k=1}^n(-1)^k{nchoose k}x^{k-1}$.
– Robert Z
Nov 17 at 9:40
Actually, there is a closed formula: see answer below
– G Cab
Nov 17 at 15:01
@GCab Maybe we do not agree with the same definition of "closed formula". However it is true that Stirling numbers of the first kind can be written by using harmonic numbers. See en.wikipedia.org/wiki/…
– Robert Z
Nov 17 at 15:13
add a comment |
it is the same but how to prove that
– Marko Škorić
Nov 17 at 9:37
1
You can try by induction or by an "integral" trick by considering $sum_{k=1}^n(-1)^k{nchoose k}x^{k-1}$.
– Robert Z
Nov 17 at 9:40
Actually, there is a closed formula: see answer below
– G Cab
Nov 17 at 15:01
@GCab Maybe we do not agree with the same definition of "closed formula". However it is true that Stirling numbers of the first kind can be written by using harmonic numbers. See en.wikipedia.org/wiki/…
– Robert Z
Nov 17 at 15:13
it is the same but how to prove that
– Marko Škorić
Nov 17 at 9:37
it is the same but how to prove that
– Marko Škorić
Nov 17 at 9:37
1
1
You can try by induction or by an "integral" trick by considering $sum_{k=1}^n(-1)^k{nchoose k}x^{k-1}$.
– Robert Z
Nov 17 at 9:40
You can try by induction or by an "integral" trick by considering $sum_{k=1}^n(-1)^k{nchoose k}x^{k-1}$.
– Robert Z
Nov 17 at 9:40
Actually, there is a closed formula: see answer below
– G Cab
Nov 17 at 15:01
Actually, there is a closed formula: see answer below
– G Cab
Nov 17 at 15:01
@GCab Maybe we do not agree with the same definition of "closed formula". However it is true that Stirling numbers of the first kind can be written by using harmonic numbers. See en.wikipedia.org/wiki/…
– Robert Z
Nov 17 at 15:13
@GCab Maybe we do not agree with the same definition of "closed formula". However it is true that Stirling numbers of the first kind can be written by using harmonic numbers. See en.wikipedia.org/wiki/…
– Robert Z
Nov 17 at 15:13
add a comment |
up vote
1
down vote
We can write your sum as
$$
eqalign{
& f(n) = sumlimits_{k = 1}^n {left( { - 1} right)^{,k + 1} left( matrix{
n cr
k cr} right){1 over k}} = cr
& = sumlimits_{k = 0}^{n - 1} {left( { - 1} right)^{,k} left( matrix{
n cr
k + 1 cr} right){1 over {k + 1}}} = sumlimits_{k = 0}^infty {left( { - 1} right)^{,k} left( matrix{
n cr
k + 1 cr} right){1 over {k + 1}}} = cr
& = sumlimits_{k = 0}^infty {t_k } cr}
$$
and we can express it in terms of a Hypergeometric function, since
$$
eqalign{
& t_0 = left( matrix{
n cr
1 cr} right) = n cr
& {{t_{k + 1} } over {t_k }} = - {{n^{,underline {,k + 2,} } } over {left( {k + 2} right)left( {k + 2} right)!}}
{{left( {k + 1} right)left( {k + 1} right)!} over {n^{,underline {,k + 1,} } }} = cr
& = - {{left( {n - 1 - k} right)} over 1}{{left( {k + 1} right)} over {left( {k + 2} right)left( {k + 2} right)}}
= {{left( {k - n + 1} right)left( {k + 1} right)} over {left( {k + 2} right)left( {k + 2} right)}} cr}
$$
Then
$$
f(n) = n;{}_3F_2 left( {left. {matrix{
{ - n + 1,;1,;1} cr
{2,;2} cr
} ;} right|;1} right)
$$
Alternatively, we have that
$$
eqalign{
& f(n + 1) = sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
n + 1 cr
k cr} right){1 over k}} = cr
& = left( {sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
n cr
k cr} right){1 over k}} + sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
n cr
k - 1 cr} right){1 over k}} } right) = cr
& = left( {sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
n cr
k cr} right){1 over k}} + {1 over {n + 1}}sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
n + 1 cr
k cr} right)} } right) = cr
& = sumlimits_{k = 1}^n {left( { - 1} right)^{,k + 1} left( matrix{
n cr
k cr} right){1 over k}} - {1 over {n + 1}}left( {0^{,n + 1} - 1} right) = cr
& = f(n) + {1 over {n + 1}} cr}
$$
i.e.:
$$
left{ matrix{
f(0) = 0 hfill cr
f(1) = 1 hfill cr
f(n + 1) - f(n) = Delta f(n) = {1 over {n + 1}} hfill cr} right.
$$
or
$$
left{ matrix{
g(n) = n!f(n) hfill cr
g(0) = 0 hfill cr
g(1) = 1 hfill cr
g(n + 1) = left( {n + 1} right)f(n) + n! hfill cr} right.
$$
and this is the recurrence satified by
$$g(n)=left[ matrix{ n+1 cr 2 cr} right]$$
where $left[ matrix{ n cr m cr} right]$ represents the (unsigned) Stirling number of 1st kind.
Thus
$$ bbox[lightyellow] {
f(n) = sumlimits_{k = 1}^n {left( { - 1} right)^{,k + 1} binom{n}{k}{1 over k}}
= {1 over {n!}}left[ matrix{ n + 1 cr 2 cr} right]
}$$
Also refer to OEIS seq. A000254 .
add a comment |
up vote
1
down vote
We can write your sum as
$$
eqalign{
& f(n) = sumlimits_{k = 1}^n {left( { - 1} right)^{,k + 1} left( matrix{
n cr
k cr} right){1 over k}} = cr
& = sumlimits_{k = 0}^{n - 1} {left( { - 1} right)^{,k} left( matrix{
n cr
k + 1 cr} right){1 over {k + 1}}} = sumlimits_{k = 0}^infty {left( { - 1} right)^{,k} left( matrix{
n cr
k + 1 cr} right){1 over {k + 1}}} = cr
& = sumlimits_{k = 0}^infty {t_k } cr}
$$
and we can express it in terms of a Hypergeometric function, since
$$
eqalign{
& t_0 = left( matrix{
n cr
1 cr} right) = n cr
& {{t_{k + 1} } over {t_k }} = - {{n^{,underline {,k + 2,} } } over {left( {k + 2} right)left( {k + 2} right)!}}
{{left( {k + 1} right)left( {k + 1} right)!} over {n^{,underline {,k + 1,} } }} = cr
& = - {{left( {n - 1 - k} right)} over 1}{{left( {k + 1} right)} over {left( {k + 2} right)left( {k + 2} right)}}
= {{left( {k - n + 1} right)left( {k + 1} right)} over {left( {k + 2} right)left( {k + 2} right)}} cr}
$$
Then
$$
f(n) = n;{}_3F_2 left( {left. {matrix{
{ - n + 1,;1,;1} cr
{2,;2} cr
} ;} right|;1} right)
$$
Alternatively, we have that
$$
eqalign{
& f(n + 1) = sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
n + 1 cr
k cr} right){1 over k}} = cr
& = left( {sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
n cr
k cr} right){1 over k}} + sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
n cr
k - 1 cr} right){1 over k}} } right) = cr
& = left( {sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
n cr
k cr} right){1 over k}} + {1 over {n + 1}}sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
n + 1 cr
k cr} right)} } right) = cr
& = sumlimits_{k = 1}^n {left( { - 1} right)^{,k + 1} left( matrix{
n cr
k cr} right){1 over k}} - {1 over {n + 1}}left( {0^{,n + 1} - 1} right) = cr
& = f(n) + {1 over {n + 1}} cr}
$$
i.e.:
$$
left{ matrix{
f(0) = 0 hfill cr
f(1) = 1 hfill cr
f(n + 1) - f(n) = Delta f(n) = {1 over {n + 1}} hfill cr} right.
$$
or
$$
left{ matrix{
g(n) = n!f(n) hfill cr
g(0) = 0 hfill cr
g(1) = 1 hfill cr
g(n + 1) = left( {n + 1} right)f(n) + n! hfill cr} right.
$$
and this is the recurrence satified by
$$g(n)=left[ matrix{ n+1 cr 2 cr} right]$$
where $left[ matrix{ n cr m cr} right]$ represents the (unsigned) Stirling number of 1st kind.
Thus
$$ bbox[lightyellow] {
f(n) = sumlimits_{k = 1}^n {left( { - 1} right)^{,k + 1} binom{n}{k}{1 over k}}
= {1 over {n!}}left[ matrix{ n + 1 cr 2 cr} right]
}$$
Also refer to OEIS seq. A000254 .
add a comment |
up vote
1
down vote
up vote
1
down vote
We can write your sum as
$$
eqalign{
& f(n) = sumlimits_{k = 1}^n {left( { - 1} right)^{,k + 1} left( matrix{
n cr
k cr} right){1 over k}} = cr
& = sumlimits_{k = 0}^{n - 1} {left( { - 1} right)^{,k} left( matrix{
n cr
k + 1 cr} right){1 over {k + 1}}} = sumlimits_{k = 0}^infty {left( { - 1} right)^{,k} left( matrix{
n cr
k + 1 cr} right){1 over {k + 1}}} = cr
& = sumlimits_{k = 0}^infty {t_k } cr}
$$
and we can express it in terms of a Hypergeometric function, since
$$
eqalign{
& t_0 = left( matrix{
n cr
1 cr} right) = n cr
& {{t_{k + 1} } over {t_k }} = - {{n^{,underline {,k + 2,} } } over {left( {k + 2} right)left( {k + 2} right)!}}
{{left( {k + 1} right)left( {k + 1} right)!} over {n^{,underline {,k + 1,} } }} = cr
& = - {{left( {n - 1 - k} right)} over 1}{{left( {k + 1} right)} over {left( {k + 2} right)left( {k + 2} right)}}
= {{left( {k - n + 1} right)left( {k + 1} right)} over {left( {k + 2} right)left( {k + 2} right)}} cr}
$$
Then
$$
f(n) = n;{}_3F_2 left( {left. {matrix{
{ - n + 1,;1,;1} cr
{2,;2} cr
} ;} right|;1} right)
$$
Alternatively, we have that
$$
eqalign{
& f(n + 1) = sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
n + 1 cr
k cr} right){1 over k}} = cr
& = left( {sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
n cr
k cr} right){1 over k}} + sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
n cr
k - 1 cr} right){1 over k}} } right) = cr
& = left( {sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
n cr
k cr} right){1 over k}} + {1 over {n + 1}}sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
n + 1 cr
k cr} right)} } right) = cr
& = sumlimits_{k = 1}^n {left( { - 1} right)^{,k + 1} left( matrix{
n cr
k cr} right){1 over k}} - {1 over {n + 1}}left( {0^{,n + 1} - 1} right) = cr
& = f(n) + {1 over {n + 1}} cr}
$$
i.e.:
$$
left{ matrix{
f(0) = 0 hfill cr
f(1) = 1 hfill cr
f(n + 1) - f(n) = Delta f(n) = {1 over {n + 1}} hfill cr} right.
$$
or
$$
left{ matrix{
g(n) = n!f(n) hfill cr
g(0) = 0 hfill cr
g(1) = 1 hfill cr
g(n + 1) = left( {n + 1} right)f(n) + n! hfill cr} right.
$$
and this is the recurrence satified by
$$g(n)=left[ matrix{ n+1 cr 2 cr} right]$$
where $left[ matrix{ n cr m cr} right]$ represents the (unsigned) Stirling number of 1st kind.
Thus
$$ bbox[lightyellow] {
f(n) = sumlimits_{k = 1}^n {left( { - 1} right)^{,k + 1} binom{n}{k}{1 over k}}
= {1 over {n!}}left[ matrix{ n + 1 cr 2 cr} right]
}$$
Also refer to OEIS seq. A000254 .
We can write your sum as
$$
eqalign{
& f(n) = sumlimits_{k = 1}^n {left( { - 1} right)^{,k + 1} left( matrix{
n cr
k cr} right){1 over k}} = cr
& = sumlimits_{k = 0}^{n - 1} {left( { - 1} right)^{,k} left( matrix{
n cr
k + 1 cr} right){1 over {k + 1}}} = sumlimits_{k = 0}^infty {left( { - 1} right)^{,k} left( matrix{
n cr
k + 1 cr} right){1 over {k + 1}}} = cr
& = sumlimits_{k = 0}^infty {t_k } cr}
$$
and we can express it in terms of a Hypergeometric function, since
$$
eqalign{
& t_0 = left( matrix{
n cr
1 cr} right) = n cr
& {{t_{k + 1} } over {t_k }} = - {{n^{,underline {,k + 2,} } } over {left( {k + 2} right)left( {k + 2} right)!}}
{{left( {k + 1} right)left( {k + 1} right)!} over {n^{,underline {,k + 1,} } }} = cr
& = - {{left( {n - 1 - k} right)} over 1}{{left( {k + 1} right)} over {left( {k + 2} right)left( {k + 2} right)}}
= {{left( {k - n + 1} right)left( {k + 1} right)} over {left( {k + 2} right)left( {k + 2} right)}} cr}
$$
Then
$$
f(n) = n;{}_3F_2 left( {left. {matrix{
{ - n + 1,;1,;1} cr
{2,;2} cr
} ;} right|;1} right)
$$
Alternatively, we have that
$$
eqalign{
& f(n + 1) = sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
n + 1 cr
k cr} right){1 over k}} = cr
& = left( {sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
n cr
k cr} right){1 over k}} + sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
n cr
k - 1 cr} right){1 over k}} } right) = cr
& = left( {sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
n cr
k cr} right){1 over k}} + {1 over {n + 1}}sumlimits_{k = 1}^{n + 1} {left( { - 1} right)^{,k + 1} left( matrix{
n + 1 cr
k cr} right)} } right) = cr
& = sumlimits_{k = 1}^n {left( { - 1} right)^{,k + 1} left( matrix{
n cr
k cr} right){1 over k}} - {1 over {n + 1}}left( {0^{,n + 1} - 1} right) = cr
& = f(n) + {1 over {n + 1}} cr}
$$
i.e.:
$$
left{ matrix{
f(0) = 0 hfill cr
f(1) = 1 hfill cr
f(n + 1) - f(n) = Delta f(n) = {1 over {n + 1}} hfill cr} right.
$$
or
$$
left{ matrix{
g(n) = n!f(n) hfill cr
g(0) = 0 hfill cr
g(1) = 1 hfill cr
g(n + 1) = left( {n + 1} right)f(n) + n! hfill cr} right.
$$
and this is the recurrence satified by
$$g(n)=left[ matrix{ n+1 cr 2 cr} right]$$
where $left[ matrix{ n cr m cr} right]$ represents the (unsigned) Stirling number of 1st kind.
Thus
$$ bbox[lightyellow] {
f(n) = sumlimits_{k = 1}^n {left( { - 1} right)^{,k + 1} binom{n}{k}{1 over k}}
= {1 over {n!}}left[ matrix{ n + 1 cr 2 cr} right]
}$$
Also refer to OEIS seq. A000254 .
edited Nov 17 at 14:59
answered Nov 17 at 10:16
G Cab
17.1k31237
17.1k31237
add a comment |
add a comment |
up vote
0
down vote
This problem and its type appear at MSE regularly. Suppose we seek to
compute
$$S_n = sum_{k=1}^n {nchoose k} frac{(-1)^{k+1}}{k}.$$
With this in mind we introduce the function
$$f(z) = n! (-1)^{n+1} frac{1}{z^2} prod_{q=1}^n frac{1}{z-q}.$$
We then obtain for $1le kle n$
$$mathrm{Res}_{z=k} f(z) =
(-1)^{n+1} frac{n!}{k^2} prod_{q=1}^{k-1} frac{1}{k-q}
prod_{q=k+1}^n frac{1}{k-q}
\ = (-1)^{n+1} frac{n!}{k}
frac{1}{k!} frac{(-1)^{n-k}}{(n-k)!}
= {nchoose k} frac{(-1)^{k+1}}{k}.$$
This means that
$$S_n = sum_{k=1}^n mathrm{Res}_{z=k} f(z)$$
and since residues sum to zero we have
$$S_n + mathrm{Res}_{z=0} f(z) + mathrm{Res}_{z=infty} f(z) = 0.$$
We can compute the residue at infinity by inspection (it is zero) or
more formally through
$$mathrm{Res}_{z=infty}
n! (-1)^{n+1} frac{1}{z^2} prod_{q=1}^n frac{1}{z-q}
\ = - n! (-1)^{n+1} mathrm{Res}_{z=0} frac{1}{z^2}
z^2 prod_{q=1}^n frac{1}{1/z-q}
\ = - n! (-1)^{n+1} mathrm{Res}_{z=0}
prod_{q=1}^n frac{z}{1-qz}
\ = - n! (-1)^{n+1} mathrm{Res}_{z=0} z^n
prod_{q=1}^n frac{1}{1-qz} = 0.$$
We get for the residue at $z=0$ that
$$mathrm{Res}_{z=0} f(z) =
n! (-1)^{n+1}
left. left(prod_{q=1}^n frac{1}{z-q}right)'right|_{z=0}
\ = - n! (-1)^{n+1} left.
left(prod_{q=1}^n frac{1}{z-q}right)
sum_{q=1}^n frac{1}{z-q} right|_{z=0}
\ = n! (-1)^n frac{(-1)^{n}}{n!} left(-H_{n}right)
= -H_n.$$
We thus have $S_n - H_n = 0$ or
$$bbox[5px,border:2px solid #00A000]{
S_n = H_n = sum_{k=1}^n frac{1}{k}.}$$
add a comment |
up vote
0
down vote
This problem and its type appear at MSE regularly. Suppose we seek to
compute
$$S_n = sum_{k=1}^n {nchoose k} frac{(-1)^{k+1}}{k}.$$
With this in mind we introduce the function
$$f(z) = n! (-1)^{n+1} frac{1}{z^2} prod_{q=1}^n frac{1}{z-q}.$$
We then obtain for $1le kle n$
$$mathrm{Res}_{z=k} f(z) =
(-1)^{n+1} frac{n!}{k^2} prod_{q=1}^{k-1} frac{1}{k-q}
prod_{q=k+1}^n frac{1}{k-q}
\ = (-1)^{n+1} frac{n!}{k}
frac{1}{k!} frac{(-1)^{n-k}}{(n-k)!}
= {nchoose k} frac{(-1)^{k+1}}{k}.$$
This means that
$$S_n = sum_{k=1}^n mathrm{Res}_{z=k} f(z)$$
and since residues sum to zero we have
$$S_n + mathrm{Res}_{z=0} f(z) + mathrm{Res}_{z=infty} f(z) = 0.$$
We can compute the residue at infinity by inspection (it is zero) or
more formally through
$$mathrm{Res}_{z=infty}
n! (-1)^{n+1} frac{1}{z^2} prod_{q=1}^n frac{1}{z-q}
\ = - n! (-1)^{n+1} mathrm{Res}_{z=0} frac{1}{z^2}
z^2 prod_{q=1}^n frac{1}{1/z-q}
\ = - n! (-1)^{n+1} mathrm{Res}_{z=0}
prod_{q=1}^n frac{z}{1-qz}
\ = - n! (-1)^{n+1} mathrm{Res}_{z=0} z^n
prod_{q=1}^n frac{1}{1-qz} = 0.$$
We get for the residue at $z=0$ that
$$mathrm{Res}_{z=0} f(z) =
n! (-1)^{n+1}
left. left(prod_{q=1}^n frac{1}{z-q}right)'right|_{z=0}
\ = - n! (-1)^{n+1} left.
left(prod_{q=1}^n frac{1}{z-q}right)
sum_{q=1}^n frac{1}{z-q} right|_{z=0}
\ = n! (-1)^n frac{(-1)^{n}}{n!} left(-H_{n}right)
= -H_n.$$
We thus have $S_n - H_n = 0$ or
$$bbox[5px,border:2px solid #00A000]{
S_n = H_n = sum_{k=1}^n frac{1}{k}.}$$
add a comment |
up vote
0
down vote
up vote
0
down vote
This problem and its type appear at MSE regularly. Suppose we seek to
compute
$$S_n = sum_{k=1}^n {nchoose k} frac{(-1)^{k+1}}{k}.$$
With this in mind we introduce the function
$$f(z) = n! (-1)^{n+1} frac{1}{z^2} prod_{q=1}^n frac{1}{z-q}.$$
We then obtain for $1le kle n$
$$mathrm{Res}_{z=k} f(z) =
(-1)^{n+1} frac{n!}{k^2} prod_{q=1}^{k-1} frac{1}{k-q}
prod_{q=k+1}^n frac{1}{k-q}
\ = (-1)^{n+1} frac{n!}{k}
frac{1}{k!} frac{(-1)^{n-k}}{(n-k)!}
= {nchoose k} frac{(-1)^{k+1}}{k}.$$
This means that
$$S_n = sum_{k=1}^n mathrm{Res}_{z=k} f(z)$$
and since residues sum to zero we have
$$S_n + mathrm{Res}_{z=0} f(z) + mathrm{Res}_{z=infty} f(z) = 0.$$
We can compute the residue at infinity by inspection (it is zero) or
more formally through
$$mathrm{Res}_{z=infty}
n! (-1)^{n+1} frac{1}{z^2} prod_{q=1}^n frac{1}{z-q}
\ = - n! (-1)^{n+1} mathrm{Res}_{z=0} frac{1}{z^2}
z^2 prod_{q=1}^n frac{1}{1/z-q}
\ = - n! (-1)^{n+1} mathrm{Res}_{z=0}
prod_{q=1}^n frac{z}{1-qz}
\ = - n! (-1)^{n+1} mathrm{Res}_{z=0} z^n
prod_{q=1}^n frac{1}{1-qz} = 0.$$
We get for the residue at $z=0$ that
$$mathrm{Res}_{z=0} f(z) =
n! (-1)^{n+1}
left. left(prod_{q=1}^n frac{1}{z-q}right)'right|_{z=0}
\ = - n! (-1)^{n+1} left.
left(prod_{q=1}^n frac{1}{z-q}right)
sum_{q=1}^n frac{1}{z-q} right|_{z=0}
\ = n! (-1)^n frac{(-1)^{n}}{n!} left(-H_{n}right)
= -H_n.$$
We thus have $S_n - H_n = 0$ or
$$bbox[5px,border:2px solid #00A000]{
S_n = H_n = sum_{k=1}^n frac{1}{k}.}$$
This problem and its type appear at MSE regularly. Suppose we seek to
compute
$$S_n = sum_{k=1}^n {nchoose k} frac{(-1)^{k+1}}{k}.$$
With this in mind we introduce the function
$$f(z) = n! (-1)^{n+1} frac{1}{z^2} prod_{q=1}^n frac{1}{z-q}.$$
We then obtain for $1le kle n$
$$mathrm{Res}_{z=k} f(z) =
(-1)^{n+1} frac{n!}{k^2} prod_{q=1}^{k-1} frac{1}{k-q}
prod_{q=k+1}^n frac{1}{k-q}
\ = (-1)^{n+1} frac{n!}{k}
frac{1}{k!} frac{(-1)^{n-k}}{(n-k)!}
= {nchoose k} frac{(-1)^{k+1}}{k}.$$
This means that
$$S_n = sum_{k=1}^n mathrm{Res}_{z=k} f(z)$$
and since residues sum to zero we have
$$S_n + mathrm{Res}_{z=0} f(z) + mathrm{Res}_{z=infty} f(z) = 0.$$
We can compute the residue at infinity by inspection (it is zero) or
more formally through
$$mathrm{Res}_{z=infty}
n! (-1)^{n+1} frac{1}{z^2} prod_{q=1}^n frac{1}{z-q}
\ = - n! (-1)^{n+1} mathrm{Res}_{z=0} frac{1}{z^2}
z^2 prod_{q=1}^n frac{1}{1/z-q}
\ = - n! (-1)^{n+1} mathrm{Res}_{z=0}
prod_{q=1}^n frac{z}{1-qz}
\ = - n! (-1)^{n+1} mathrm{Res}_{z=0} z^n
prod_{q=1}^n frac{1}{1-qz} = 0.$$
We get for the residue at $z=0$ that
$$mathrm{Res}_{z=0} f(z) =
n! (-1)^{n+1}
left. left(prod_{q=1}^n frac{1}{z-q}right)'right|_{z=0}
\ = - n! (-1)^{n+1} left.
left(prod_{q=1}^n frac{1}{z-q}right)
sum_{q=1}^n frac{1}{z-q} right|_{z=0}
\ = n! (-1)^n frac{(-1)^{n}}{n!} left(-H_{n}right)
= -H_n.$$
We thus have $S_n - H_n = 0$ or
$$bbox[5px,border:2px solid #00A000]{
S_n = H_n = sum_{k=1}^n frac{1}{k}.}$$
answered Nov 17 at 15:05
Marko Riedel
38.5k339106
38.5k339106
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3002131%2fcalculate-sum-k-1n-1k1-binomnk-frac1k%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Compare with this question.
– Dietrich Burde
Nov 17 at 9:27