Calculating $sum_{k=0}^{lfloor frac{p}{2} rfloor} binom{p}{k}$
up vote
0
down vote
favorite
I'm trying to find the value of: $$sum_{k=0}^{left lfloor frac{p}{2} right rfloor} binom{p}{k}$$ For even and odd $p$, the indication I was given suggests writing it as $$frac{1}{2}left (sum_{k=0}^{left lfloor frac{p}{2} right rfloor} binom{p}{k} + sum_{k=0}^{left lfloor frac{p}{2} right rfloor} binom{p}{p-k} right )$$ But I nothing I did got me anywhere.
summation binomial-coefficients floor-function
add a comment |
up vote
0
down vote
favorite
I'm trying to find the value of: $$sum_{k=0}^{left lfloor frac{p}{2} right rfloor} binom{p}{k}$$ For even and odd $p$, the indication I was given suggests writing it as $$frac{1}{2}left (sum_{k=0}^{left lfloor frac{p}{2} right rfloor} binom{p}{k} + sum_{k=0}^{left lfloor frac{p}{2} right rfloor} binom{p}{p-k} right )$$ But I nothing I did got me anywhere.
summation binomial-coefficients floor-function
1
Recall that $sum_{k=0}^pbinom{p}{k}=(1+1)^k$.
– Robert Z
Nov 17 at 15:57
Look at Pascal's triangle. The p-th row consists of the values $p choose k$. Maybe you can notice a pattern when you sum 1/2 the values in a row.
– Joel Pereira
Nov 17 at 16:02
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I'm trying to find the value of: $$sum_{k=0}^{left lfloor frac{p}{2} right rfloor} binom{p}{k}$$ For even and odd $p$, the indication I was given suggests writing it as $$frac{1}{2}left (sum_{k=0}^{left lfloor frac{p}{2} right rfloor} binom{p}{k} + sum_{k=0}^{left lfloor frac{p}{2} right rfloor} binom{p}{p-k} right )$$ But I nothing I did got me anywhere.
summation binomial-coefficients floor-function
I'm trying to find the value of: $$sum_{k=0}^{left lfloor frac{p}{2} right rfloor} binom{p}{k}$$ For even and odd $p$, the indication I was given suggests writing it as $$frac{1}{2}left (sum_{k=0}^{left lfloor frac{p}{2} right rfloor} binom{p}{k} + sum_{k=0}^{left lfloor frac{p}{2} right rfloor} binom{p}{p-k} right )$$ But I nothing I did got me anywhere.
summation binomial-coefficients floor-function
summation binomial-coefficients floor-function
asked Nov 17 at 15:54
FuzzyPixelz
337214
337214
1
Recall that $sum_{k=0}^pbinom{p}{k}=(1+1)^k$.
– Robert Z
Nov 17 at 15:57
Look at Pascal's triangle. The p-th row consists of the values $p choose k$. Maybe you can notice a pattern when you sum 1/2 the values in a row.
– Joel Pereira
Nov 17 at 16:02
add a comment |
1
Recall that $sum_{k=0}^pbinom{p}{k}=(1+1)^k$.
– Robert Z
Nov 17 at 15:57
Look at Pascal's triangle. The p-th row consists of the values $p choose k$. Maybe you can notice a pattern when you sum 1/2 the values in a row.
– Joel Pereira
Nov 17 at 16:02
1
1
Recall that $sum_{k=0}^pbinom{p}{k}=(1+1)^k$.
– Robert Z
Nov 17 at 15:57
Recall that $sum_{k=0}^pbinom{p}{k}=(1+1)^k$.
– Robert Z
Nov 17 at 15:57
Look at Pascal's triangle. The p-th row consists of the values $p choose k$. Maybe you can notice a pattern when you sum 1/2 the values in a row.
– Joel Pereira
Nov 17 at 16:02
Look at Pascal's triangle. The p-th row consists of the values $p choose k$. Maybe you can notice a pattern when you sum 1/2 the values in a row.
– Joel Pereira
Nov 17 at 16:02
add a comment |
1 Answer
1
active
oldest
votes
up vote
0
down vote
You can write
$$
eqalign{
& 2^{,p} = sumlimits_{0, le ,k, le ,p} {left( matrix{
p cr
k cr} right)} = cr
& = sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
p cr
k cr} right)} + sumlimits_{leftlfloor {{p over 2}} rightrfloor + 1, le ,k, le ,p} {left( matrix{
p cr
k cr} right)} = cr
& = sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
p cr
k cr} right)} + sumlimits_{leftlfloor {{p over 2}} rightrfloor + 1, le ,k, le ,p} {left( matrix{
p cr
p - k cr} right)} = cr
& = sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
p cr
k cr} right)} + sumlimits_{0, le ,k, le ,p - leftlfloor {{p over 2}} rightrfloor - 1} {left( matrix{
p cr
k cr} right)} = cr
& = sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
p cr
k cr} right)} + sumlimits_{0, le ,k, le ,leftlceil {{p over 2}} rightrceil - 1} {left( matrix{
p cr
k cr} right)} = cr
& = sumlimits_{0, le ,k, le ,leftlceil {{p over 2}} rightrceil - 1} {left( matrix{
p cr
k cr} right)} + sumlimits_{leftlceil {{p over 2}} rightrceil , le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
p cr
k cr} right)} + sumlimits_{0, le ,k, le ,leftlceil {{p over 2}} rightrceil - 1} {left( matrix{
p cr
k cr} right)} = cr
& = 2sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
p cr
k cr} right)} + left( {leftlceil {{p over 2}} rightrceil - leftlfloor {{p over 2}} rightrfloor - 1} right)left( matrix{
p cr
leftlfloor {{p over 2}} rightrfloor cr} right) = cr
& = 2sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
p cr
k cr} right)} - left( {1 - pbmod 2} right)left( matrix{
p cr
leftlfloor {{p over 2}} rightrfloor cr} right) cr}
$$
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
You can write
$$
eqalign{
& 2^{,p} = sumlimits_{0, le ,k, le ,p} {left( matrix{
p cr
k cr} right)} = cr
& = sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
p cr
k cr} right)} + sumlimits_{leftlfloor {{p over 2}} rightrfloor + 1, le ,k, le ,p} {left( matrix{
p cr
k cr} right)} = cr
& = sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
p cr
k cr} right)} + sumlimits_{leftlfloor {{p over 2}} rightrfloor + 1, le ,k, le ,p} {left( matrix{
p cr
p - k cr} right)} = cr
& = sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
p cr
k cr} right)} + sumlimits_{0, le ,k, le ,p - leftlfloor {{p over 2}} rightrfloor - 1} {left( matrix{
p cr
k cr} right)} = cr
& = sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
p cr
k cr} right)} + sumlimits_{0, le ,k, le ,leftlceil {{p over 2}} rightrceil - 1} {left( matrix{
p cr
k cr} right)} = cr
& = sumlimits_{0, le ,k, le ,leftlceil {{p over 2}} rightrceil - 1} {left( matrix{
p cr
k cr} right)} + sumlimits_{leftlceil {{p over 2}} rightrceil , le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
p cr
k cr} right)} + sumlimits_{0, le ,k, le ,leftlceil {{p over 2}} rightrceil - 1} {left( matrix{
p cr
k cr} right)} = cr
& = 2sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
p cr
k cr} right)} + left( {leftlceil {{p over 2}} rightrceil - leftlfloor {{p over 2}} rightrfloor - 1} right)left( matrix{
p cr
leftlfloor {{p over 2}} rightrfloor cr} right) = cr
& = 2sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
p cr
k cr} right)} - left( {1 - pbmod 2} right)left( matrix{
p cr
leftlfloor {{p over 2}} rightrfloor cr} right) cr}
$$
add a comment |
up vote
0
down vote
You can write
$$
eqalign{
& 2^{,p} = sumlimits_{0, le ,k, le ,p} {left( matrix{
p cr
k cr} right)} = cr
& = sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
p cr
k cr} right)} + sumlimits_{leftlfloor {{p over 2}} rightrfloor + 1, le ,k, le ,p} {left( matrix{
p cr
k cr} right)} = cr
& = sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
p cr
k cr} right)} + sumlimits_{leftlfloor {{p over 2}} rightrfloor + 1, le ,k, le ,p} {left( matrix{
p cr
p - k cr} right)} = cr
& = sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
p cr
k cr} right)} + sumlimits_{0, le ,k, le ,p - leftlfloor {{p over 2}} rightrfloor - 1} {left( matrix{
p cr
k cr} right)} = cr
& = sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
p cr
k cr} right)} + sumlimits_{0, le ,k, le ,leftlceil {{p over 2}} rightrceil - 1} {left( matrix{
p cr
k cr} right)} = cr
& = sumlimits_{0, le ,k, le ,leftlceil {{p over 2}} rightrceil - 1} {left( matrix{
p cr
k cr} right)} + sumlimits_{leftlceil {{p over 2}} rightrceil , le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
p cr
k cr} right)} + sumlimits_{0, le ,k, le ,leftlceil {{p over 2}} rightrceil - 1} {left( matrix{
p cr
k cr} right)} = cr
& = 2sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
p cr
k cr} right)} + left( {leftlceil {{p over 2}} rightrceil - leftlfloor {{p over 2}} rightrfloor - 1} right)left( matrix{
p cr
leftlfloor {{p over 2}} rightrfloor cr} right) = cr
& = 2sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
p cr
k cr} right)} - left( {1 - pbmod 2} right)left( matrix{
p cr
leftlfloor {{p over 2}} rightrfloor cr} right) cr}
$$
add a comment |
up vote
0
down vote
up vote
0
down vote
You can write
$$
eqalign{
& 2^{,p} = sumlimits_{0, le ,k, le ,p} {left( matrix{
p cr
k cr} right)} = cr
& = sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
p cr
k cr} right)} + sumlimits_{leftlfloor {{p over 2}} rightrfloor + 1, le ,k, le ,p} {left( matrix{
p cr
k cr} right)} = cr
& = sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
p cr
k cr} right)} + sumlimits_{leftlfloor {{p over 2}} rightrfloor + 1, le ,k, le ,p} {left( matrix{
p cr
p - k cr} right)} = cr
& = sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
p cr
k cr} right)} + sumlimits_{0, le ,k, le ,p - leftlfloor {{p over 2}} rightrfloor - 1} {left( matrix{
p cr
k cr} right)} = cr
& = sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
p cr
k cr} right)} + sumlimits_{0, le ,k, le ,leftlceil {{p over 2}} rightrceil - 1} {left( matrix{
p cr
k cr} right)} = cr
& = sumlimits_{0, le ,k, le ,leftlceil {{p over 2}} rightrceil - 1} {left( matrix{
p cr
k cr} right)} + sumlimits_{leftlceil {{p over 2}} rightrceil , le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
p cr
k cr} right)} + sumlimits_{0, le ,k, le ,leftlceil {{p over 2}} rightrceil - 1} {left( matrix{
p cr
k cr} right)} = cr
& = 2sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
p cr
k cr} right)} + left( {leftlceil {{p over 2}} rightrceil - leftlfloor {{p over 2}} rightrfloor - 1} right)left( matrix{
p cr
leftlfloor {{p over 2}} rightrfloor cr} right) = cr
& = 2sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
p cr
k cr} right)} - left( {1 - pbmod 2} right)left( matrix{
p cr
leftlfloor {{p over 2}} rightrfloor cr} right) cr}
$$
You can write
$$
eqalign{
& 2^{,p} = sumlimits_{0, le ,k, le ,p} {left( matrix{
p cr
k cr} right)} = cr
& = sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
p cr
k cr} right)} + sumlimits_{leftlfloor {{p over 2}} rightrfloor + 1, le ,k, le ,p} {left( matrix{
p cr
k cr} right)} = cr
& = sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
p cr
k cr} right)} + sumlimits_{leftlfloor {{p over 2}} rightrfloor + 1, le ,k, le ,p} {left( matrix{
p cr
p - k cr} right)} = cr
& = sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
p cr
k cr} right)} + sumlimits_{0, le ,k, le ,p - leftlfloor {{p over 2}} rightrfloor - 1} {left( matrix{
p cr
k cr} right)} = cr
& = sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
p cr
k cr} right)} + sumlimits_{0, le ,k, le ,leftlceil {{p over 2}} rightrceil - 1} {left( matrix{
p cr
k cr} right)} = cr
& = sumlimits_{0, le ,k, le ,leftlceil {{p over 2}} rightrceil - 1} {left( matrix{
p cr
k cr} right)} + sumlimits_{leftlceil {{p over 2}} rightrceil , le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
p cr
k cr} right)} + sumlimits_{0, le ,k, le ,leftlceil {{p over 2}} rightrceil - 1} {left( matrix{
p cr
k cr} right)} = cr
& = 2sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
p cr
k cr} right)} + left( {leftlceil {{p over 2}} rightrceil - leftlfloor {{p over 2}} rightrfloor - 1} right)left( matrix{
p cr
leftlfloor {{p over 2}} rightrfloor cr} right) = cr
& = 2sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
p cr
k cr} right)} - left( {1 - pbmod 2} right)left( matrix{
p cr
leftlfloor {{p over 2}} rightrfloor cr} right) cr}
$$
answered Nov 18 at 12:13
G Cab
17.1k31237
17.1k31237
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3002493%2fcalculating-sum-k-0-lfloor-fracp2-rfloor-binompk%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
Recall that $sum_{k=0}^pbinom{p}{k}=(1+1)^k$.
– Robert Z
Nov 17 at 15:57
Look at Pascal's triangle. The p-th row consists of the values $p choose k$. Maybe you can notice a pattern when you sum 1/2 the values in a row.
– Joel Pereira
Nov 17 at 16:02