Calculating $sum_{k=0}^{lfloor frac{p}{2} rfloor} binom{p}{k}$











up vote
0
down vote

favorite












I'm trying to find the value of: $$sum_{k=0}^{left lfloor frac{p}{2} right rfloor} binom{p}{k}$$ For even and odd $p$, the indication I was given suggests writing it as $$frac{1}{2}left (sum_{k=0}^{left lfloor frac{p}{2} right rfloor} binom{p}{k} + sum_{k=0}^{left lfloor frac{p}{2} right rfloor} binom{p}{p-k} right )$$ But I nothing I did got me anywhere.










share|cite|improve this question


















  • 1




    Recall that $sum_{k=0}^pbinom{p}{k}=(1+1)^k$.
    – Robert Z
    Nov 17 at 15:57










  • Look at Pascal's triangle. The p-th row consists of the values $p choose k$. Maybe you can notice a pattern when you sum 1/2 the values in a row.
    – Joel Pereira
    Nov 17 at 16:02















up vote
0
down vote

favorite












I'm trying to find the value of: $$sum_{k=0}^{left lfloor frac{p}{2} right rfloor} binom{p}{k}$$ For even and odd $p$, the indication I was given suggests writing it as $$frac{1}{2}left (sum_{k=0}^{left lfloor frac{p}{2} right rfloor} binom{p}{k} + sum_{k=0}^{left lfloor frac{p}{2} right rfloor} binom{p}{p-k} right )$$ But I nothing I did got me anywhere.










share|cite|improve this question


















  • 1




    Recall that $sum_{k=0}^pbinom{p}{k}=(1+1)^k$.
    – Robert Z
    Nov 17 at 15:57










  • Look at Pascal's triangle. The p-th row consists of the values $p choose k$. Maybe you can notice a pattern when you sum 1/2 the values in a row.
    – Joel Pereira
    Nov 17 at 16:02













up vote
0
down vote

favorite









up vote
0
down vote

favorite











I'm trying to find the value of: $$sum_{k=0}^{left lfloor frac{p}{2} right rfloor} binom{p}{k}$$ For even and odd $p$, the indication I was given suggests writing it as $$frac{1}{2}left (sum_{k=0}^{left lfloor frac{p}{2} right rfloor} binom{p}{k} + sum_{k=0}^{left lfloor frac{p}{2} right rfloor} binom{p}{p-k} right )$$ But I nothing I did got me anywhere.










share|cite|improve this question













I'm trying to find the value of: $$sum_{k=0}^{left lfloor frac{p}{2} right rfloor} binom{p}{k}$$ For even and odd $p$, the indication I was given suggests writing it as $$frac{1}{2}left (sum_{k=0}^{left lfloor frac{p}{2} right rfloor} binom{p}{k} + sum_{k=0}^{left lfloor frac{p}{2} right rfloor} binom{p}{p-k} right )$$ But I nothing I did got me anywhere.







summation binomial-coefficients floor-function






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Nov 17 at 15:54









FuzzyPixelz

337214




337214








  • 1




    Recall that $sum_{k=0}^pbinom{p}{k}=(1+1)^k$.
    – Robert Z
    Nov 17 at 15:57










  • Look at Pascal's triangle. The p-th row consists of the values $p choose k$. Maybe you can notice a pattern when you sum 1/2 the values in a row.
    – Joel Pereira
    Nov 17 at 16:02














  • 1




    Recall that $sum_{k=0}^pbinom{p}{k}=(1+1)^k$.
    – Robert Z
    Nov 17 at 15:57










  • Look at Pascal's triangle. The p-th row consists of the values $p choose k$. Maybe you can notice a pattern when you sum 1/2 the values in a row.
    – Joel Pereira
    Nov 17 at 16:02








1




1




Recall that $sum_{k=0}^pbinom{p}{k}=(1+1)^k$.
– Robert Z
Nov 17 at 15:57




Recall that $sum_{k=0}^pbinom{p}{k}=(1+1)^k$.
– Robert Z
Nov 17 at 15:57












Look at Pascal's triangle. The p-th row consists of the values $p choose k$. Maybe you can notice a pattern when you sum 1/2 the values in a row.
– Joel Pereira
Nov 17 at 16:02




Look at Pascal's triangle. The p-th row consists of the values $p choose k$. Maybe you can notice a pattern when you sum 1/2 the values in a row.
– Joel Pereira
Nov 17 at 16:02










1 Answer
1






active

oldest

votes

















up vote
0
down vote













You can write
$$
eqalign{
& 2^{,p} = sumlimits_{0, le ,k, le ,p} {left( matrix{
p cr
k cr} right)} = cr
& = sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
p cr
k cr} right)} + sumlimits_{leftlfloor {{p over 2}} rightrfloor + 1, le ,k, le ,p} {left( matrix{
p cr
k cr} right)} = cr
& = sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
p cr
k cr} right)} + sumlimits_{leftlfloor {{p over 2}} rightrfloor + 1, le ,k, le ,p} {left( matrix{
p cr
p - k cr} right)} = cr
& = sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
p cr
k cr} right)} + sumlimits_{0, le ,k, le ,p - leftlfloor {{p over 2}} rightrfloor - 1} {left( matrix{
p cr
k cr} right)} = cr
& = sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
p cr
k cr} right)} + sumlimits_{0, le ,k, le ,leftlceil {{p over 2}} rightrceil - 1} {left( matrix{
p cr
k cr} right)} = cr
& = sumlimits_{0, le ,k, le ,leftlceil {{p over 2}} rightrceil - 1} {left( matrix{
p cr
k cr} right)} + sumlimits_{leftlceil {{p over 2}} rightrceil , le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
p cr
k cr} right)} + sumlimits_{0, le ,k, le ,leftlceil {{p over 2}} rightrceil - 1} {left( matrix{
p cr
k cr} right)} = cr
& = 2sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
p cr
k cr} right)} + left( {leftlceil {{p over 2}} rightrceil - leftlfloor {{p over 2}} rightrfloor - 1} right)left( matrix{
p cr
leftlfloor {{p over 2}} rightrfloor cr} right) = cr
& = 2sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
p cr
k cr} right)} - left( {1 - pbmod 2} right)left( matrix{
p cr
leftlfloor {{p over 2}} rightrfloor cr} right) cr}
$$






share|cite|improve this answer





















    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3002493%2fcalculating-sum-k-0-lfloor-fracp2-rfloor-binompk%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    0
    down vote













    You can write
    $$
    eqalign{
    & 2^{,p} = sumlimits_{0, le ,k, le ,p} {left( matrix{
    p cr
    k cr} right)} = cr
    & = sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
    p cr
    k cr} right)} + sumlimits_{leftlfloor {{p over 2}} rightrfloor + 1, le ,k, le ,p} {left( matrix{
    p cr
    k cr} right)} = cr
    & = sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
    p cr
    k cr} right)} + sumlimits_{leftlfloor {{p over 2}} rightrfloor + 1, le ,k, le ,p} {left( matrix{
    p cr
    p - k cr} right)} = cr
    & = sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
    p cr
    k cr} right)} + sumlimits_{0, le ,k, le ,p - leftlfloor {{p over 2}} rightrfloor - 1} {left( matrix{
    p cr
    k cr} right)} = cr
    & = sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
    p cr
    k cr} right)} + sumlimits_{0, le ,k, le ,leftlceil {{p over 2}} rightrceil - 1} {left( matrix{
    p cr
    k cr} right)} = cr
    & = sumlimits_{0, le ,k, le ,leftlceil {{p over 2}} rightrceil - 1} {left( matrix{
    p cr
    k cr} right)} + sumlimits_{leftlceil {{p over 2}} rightrceil , le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
    p cr
    k cr} right)} + sumlimits_{0, le ,k, le ,leftlceil {{p over 2}} rightrceil - 1} {left( matrix{
    p cr
    k cr} right)} = cr
    & = 2sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
    p cr
    k cr} right)} + left( {leftlceil {{p over 2}} rightrceil - leftlfloor {{p over 2}} rightrfloor - 1} right)left( matrix{
    p cr
    leftlfloor {{p over 2}} rightrfloor cr} right) = cr
    & = 2sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
    p cr
    k cr} right)} - left( {1 - pbmod 2} right)left( matrix{
    p cr
    leftlfloor {{p over 2}} rightrfloor cr} right) cr}
    $$






    share|cite|improve this answer

























      up vote
      0
      down vote













      You can write
      $$
      eqalign{
      & 2^{,p} = sumlimits_{0, le ,k, le ,p} {left( matrix{
      p cr
      k cr} right)} = cr
      & = sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
      p cr
      k cr} right)} + sumlimits_{leftlfloor {{p over 2}} rightrfloor + 1, le ,k, le ,p} {left( matrix{
      p cr
      k cr} right)} = cr
      & = sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
      p cr
      k cr} right)} + sumlimits_{leftlfloor {{p over 2}} rightrfloor + 1, le ,k, le ,p} {left( matrix{
      p cr
      p - k cr} right)} = cr
      & = sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
      p cr
      k cr} right)} + sumlimits_{0, le ,k, le ,p - leftlfloor {{p over 2}} rightrfloor - 1} {left( matrix{
      p cr
      k cr} right)} = cr
      & = sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
      p cr
      k cr} right)} + sumlimits_{0, le ,k, le ,leftlceil {{p over 2}} rightrceil - 1} {left( matrix{
      p cr
      k cr} right)} = cr
      & = sumlimits_{0, le ,k, le ,leftlceil {{p over 2}} rightrceil - 1} {left( matrix{
      p cr
      k cr} right)} + sumlimits_{leftlceil {{p over 2}} rightrceil , le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
      p cr
      k cr} right)} + sumlimits_{0, le ,k, le ,leftlceil {{p over 2}} rightrceil - 1} {left( matrix{
      p cr
      k cr} right)} = cr
      & = 2sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
      p cr
      k cr} right)} + left( {leftlceil {{p over 2}} rightrceil - leftlfloor {{p over 2}} rightrfloor - 1} right)left( matrix{
      p cr
      leftlfloor {{p over 2}} rightrfloor cr} right) = cr
      & = 2sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
      p cr
      k cr} right)} - left( {1 - pbmod 2} right)left( matrix{
      p cr
      leftlfloor {{p over 2}} rightrfloor cr} right) cr}
      $$






      share|cite|improve this answer























        up vote
        0
        down vote










        up vote
        0
        down vote









        You can write
        $$
        eqalign{
        & 2^{,p} = sumlimits_{0, le ,k, le ,p} {left( matrix{
        p cr
        k cr} right)} = cr
        & = sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
        p cr
        k cr} right)} + sumlimits_{leftlfloor {{p over 2}} rightrfloor + 1, le ,k, le ,p} {left( matrix{
        p cr
        k cr} right)} = cr
        & = sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
        p cr
        k cr} right)} + sumlimits_{leftlfloor {{p over 2}} rightrfloor + 1, le ,k, le ,p} {left( matrix{
        p cr
        p - k cr} right)} = cr
        & = sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
        p cr
        k cr} right)} + sumlimits_{0, le ,k, le ,p - leftlfloor {{p over 2}} rightrfloor - 1} {left( matrix{
        p cr
        k cr} right)} = cr
        & = sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
        p cr
        k cr} right)} + sumlimits_{0, le ,k, le ,leftlceil {{p over 2}} rightrceil - 1} {left( matrix{
        p cr
        k cr} right)} = cr
        & = sumlimits_{0, le ,k, le ,leftlceil {{p over 2}} rightrceil - 1} {left( matrix{
        p cr
        k cr} right)} + sumlimits_{leftlceil {{p over 2}} rightrceil , le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
        p cr
        k cr} right)} + sumlimits_{0, le ,k, le ,leftlceil {{p over 2}} rightrceil - 1} {left( matrix{
        p cr
        k cr} right)} = cr
        & = 2sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
        p cr
        k cr} right)} + left( {leftlceil {{p over 2}} rightrceil - leftlfloor {{p over 2}} rightrfloor - 1} right)left( matrix{
        p cr
        leftlfloor {{p over 2}} rightrfloor cr} right) = cr
        & = 2sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
        p cr
        k cr} right)} - left( {1 - pbmod 2} right)left( matrix{
        p cr
        leftlfloor {{p over 2}} rightrfloor cr} right) cr}
        $$






        share|cite|improve this answer












        You can write
        $$
        eqalign{
        & 2^{,p} = sumlimits_{0, le ,k, le ,p} {left( matrix{
        p cr
        k cr} right)} = cr
        & = sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
        p cr
        k cr} right)} + sumlimits_{leftlfloor {{p over 2}} rightrfloor + 1, le ,k, le ,p} {left( matrix{
        p cr
        k cr} right)} = cr
        & = sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
        p cr
        k cr} right)} + sumlimits_{leftlfloor {{p over 2}} rightrfloor + 1, le ,k, le ,p} {left( matrix{
        p cr
        p - k cr} right)} = cr
        & = sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
        p cr
        k cr} right)} + sumlimits_{0, le ,k, le ,p - leftlfloor {{p over 2}} rightrfloor - 1} {left( matrix{
        p cr
        k cr} right)} = cr
        & = sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
        p cr
        k cr} right)} + sumlimits_{0, le ,k, le ,leftlceil {{p over 2}} rightrceil - 1} {left( matrix{
        p cr
        k cr} right)} = cr
        & = sumlimits_{0, le ,k, le ,leftlceil {{p over 2}} rightrceil - 1} {left( matrix{
        p cr
        k cr} right)} + sumlimits_{leftlceil {{p over 2}} rightrceil , le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
        p cr
        k cr} right)} + sumlimits_{0, le ,k, le ,leftlceil {{p over 2}} rightrceil - 1} {left( matrix{
        p cr
        k cr} right)} = cr
        & = 2sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
        p cr
        k cr} right)} + left( {leftlceil {{p over 2}} rightrceil - leftlfloor {{p over 2}} rightrfloor - 1} right)left( matrix{
        p cr
        leftlfloor {{p over 2}} rightrfloor cr} right) = cr
        & = 2sumlimits_{0, le ,k, le ,leftlfloor {{p over 2}} rightrfloor } {left( matrix{
        p cr
        k cr} right)} - left( {1 - pbmod 2} right)left( matrix{
        p cr
        leftlfloor {{p over 2}} rightrfloor cr} right) cr}
        $$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Nov 18 at 12:13









        G Cab

        17.1k31237




        17.1k31237






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3002493%2fcalculating-sum-k-0-lfloor-fracp2-rfloor-binompk%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            AnyDesk - Fatal Program Failure

            How to calibrate 16:9 built-in touch-screen to a 4:3 resolution?

            QoS: MAC-Priority for clients behind a repeater