Prove: $f(t) leq K_1 e^{K_2(t-a)}+frac{varepsilon}{K_2} e^{K_2(t-a)-1}$
up vote
1
down vote
favorite
Let $f$ be a non-negative function that satisfies
$$f(t) leq K_1 + varepsilon(t-a)+K_2 int_a^t f(s)ds$$
for $aleq t leq b, quad K_1,K_2,varepsilon in mathbb{R}$. Prove:
$$f(t) leq K_1 e^{K_2(t-a)}+frac{varepsilon}{K_2} e^{K_2(t-a)-1}$$
My attempt:
Let $$U(t)=K_1 + varepsilon(t-a)+K_2 int_a^t f(s)ds, quad U'(t)=varepsilon t +K_2f(t)$$
then
$$U'(t) leq varepsilon t + K_2 U(t) iff U'(t)-K_2U(t) leq varepsilon t quad Bigg| cdot e^{-K_2(t-a)}$$
$$Big[e^{-K_2(t-a)}U(t)Big]' leq int varepsilon t cdot e^{-K_2(t-a)} dt +c iff U(t) leq -frac{varepsilon}{K_2^2}(K_2t+1)+ccdot e^{K_2(t-a)} iff$$
$$int_a^t f(s) ds leq K_1-varepsilon (t-a)-frac{varepsilon}{K_2^2}(K_2t+1)+ccdot e^{K_2(t-a)}$$
but I can't derive the inequality that has to be proven. Is my $U(t)$ a bad choice?
integration differential-equations recurrence-relations
add a comment |
up vote
1
down vote
favorite
Let $f$ be a non-negative function that satisfies
$$f(t) leq K_1 + varepsilon(t-a)+K_2 int_a^t f(s)ds$$
for $aleq t leq b, quad K_1,K_2,varepsilon in mathbb{R}$. Prove:
$$f(t) leq K_1 e^{K_2(t-a)}+frac{varepsilon}{K_2} e^{K_2(t-a)-1}$$
My attempt:
Let $$U(t)=K_1 + varepsilon(t-a)+K_2 int_a^t f(s)ds, quad U'(t)=varepsilon t +K_2f(t)$$
then
$$U'(t) leq varepsilon t + K_2 U(t) iff U'(t)-K_2U(t) leq varepsilon t quad Bigg| cdot e^{-K_2(t-a)}$$
$$Big[e^{-K_2(t-a)}U(t)Big]' leq int varepsilon t cdot e^{-K_2(t-a)} dt +c iff U(t) leq -frac{varepsilon}{K_2^2}(K_2t+1)+ccdot e^{K_2(t-a)} iff$$
$$int_a^t f(s) ds leq K_1-varepsilon (t-a)-frac{varepsilon}{K_2^2}(K_2t+1)+ccdot e^{K_2(t-a)}$$
but I can't derive the inequality that has to be proven. Is my $U(t)$ a bad choice?
integration differential-equations recurrence-relations
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Let $f$ be a non-negative function that satisfies
$$f(t) leq K_1 + varepsilon(t-a)+K_2 int_a^t f(s)ds$$
for $aleq t leq b, quad K_1,K_2,varepsilon in mathbb{R}$. Prove:
$$f(t) leq K_1 e^{K_2(t-a)}+frac{varepsilon}{K_2} e^{K_2(t-a)-1}$$
My attempt:
Let $$U(t)=K_1 + varepsilon(t-a)+K_2 int_a^t f(s)ds, quad U'(t)=varepsilon t +K_2f(t)$$
then
$$U'(t) leq varepsilon t + K_2 U(t) iff U'(t)-K_2U(t) leq varepsilon t quad Bigg| cdot e^{-K_2(t-a)}$$
$$Big[e^{-K_2(t-a)}U(t)Big]' leq int varepsilon t cdot e^{-K_2(t-a)} dt +c iff U(t) leq -frac{varepsilon}{K_2^2}(K_2t+1)+ccdot e^{K_2(t-a)} iff$$
$$int_a^t f(s) ds leq K_1-varepsilon (t-a)-frac{varepsilon}{K_2^2}(K_2t+1)+ccdot e^{K_2(t-a)}$$
but I can't derive the inequality that has to be proven. Is my $U(t)$ a bad choice?
integration differential-equations recurrence-relations
Let $f$ be a non-negative function that satisfies
$$f(t) leq K_1 + varepsilon(t-a)+K_2 int_a^t f(s)ds$$
for $aleq t leq b, quad K_1,K_2,varepsilon in mathbb{R}$. Prove:
$$f(t) leq K_1 e^{K_2(t-a)}+frac{varepsilon}{K_2} e^{K_2(t-a)-1}$$
My attempt:
Let $$U(t)=K_1 + varepsilon(t-a)+K_2 int_a^t f(s)ds, quad U'(t)=varepsilon t +K_2f(t)$$
then
$$U'(t) leq varepsilon t + K_2 U(t) iff U'(t)-K_2U(t) leq varepsilon t quad Bigg| cdot e^{-K_2(t-a)}$$
$$Big[e^{-K_2(t-a)}U(t)Big]' leq int varepsilon t cdot e^{-K_2(t-a)} dt +c iff U(t) leq -frac{varepsilon}{K_2^2}(K_2t+1)+ccdot e^{K_2(t-a)} iff$$
$$int_a^t f(s) ds leq K_1-varepsilon (t-a)-frac{varepsilon}{K_2^2}(K_2t+1)+ccdot e^{K_2(t-a)}$$
but I can't derive the inequality that has to be proven. Is my $U(t)$ a bad choice?
integration differential-equations recurrence-relations
integration differential-equations recurrence-relations
asked Nov 17 at 12:47
Jevaut
54310
54310
add a comment |
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3002332%2fprove-ft-leq-k-1-ek-2t-a-frac-varepsilonk-2-ek-2t-a-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown