Relating the areas of regions determined by joining midpoints of two sides of a convex quadrilateral to...











up vote
0
down vote

favorite
1












I have tried solve the following problem, but I can not see how to approach it:




In the figure, $ABCD$ is an arbitrary convex quadrilateral, $M$ and $N$ are, respectively, the middle points of $overline{AB}$ and $overline{CD}$, and $S,S_1,S_2$ are the area of the shaded regions. Prove that $$S=S_1+S_2$$




enter image description here



Any hints are welcome!










share|cite|improve this question
























  • Do you mean "an arbitrary convex quadrilateral"?
    – ajotatxe
    Jun 12 at 18:51










  • Yes, It should be a convex quadrilateral. I will change the statement.
    – DiegoMath
    Jun 12 at 18:57















up vote
0
down vote

favorite
1












I have tried solve the following problem, but I can not see how to approach it:




In the figure, $ABCD$ is an arbitrary convex quadrilateral, $M$ and $N$ are, respectively, the middle points of $overline{AB}$ and $overline{CD}$, and $S,S_1,S_2$ are the area of the shaded regions. Prove that $$S=S_1+S_2$$




enter image description here



Any hints are welcome!










share|cite|improve this question
























  • Do you mean "an arbitrary convex quadrilateral"?
    – ajotatxe
    Jun 12 at 18:51










  • Yes, It should be a convex quadrilateral. I will change the statement.
    – DiegoMath
    Jun 12 at 18:57













up vote
0
down vote

favorite
1









up vote
0
down vote

favorite
1






1





I have tried solve the following problem, but I can not see how to approach it:




In the figure, $ABCD$ is an arbitrary convex quadrilateral, $M$ and $N$ are, respectively, the middle points of $overline{AB}$ and $overline{CD}$, and $S,S_1,S_2$ are the area of the shaded regions. Prove that $$S=S_1+S_2$$




enter image description here



Any hints are welcome!










share|cite|improve this question















I have tried solve the following problem, but I can not see how to approach it:




In the figure, $ABCD$ is an arbitrary convex quadrilateral, $M$ and $N$ are, respectively, the middle points of $overline{AB}$ and $overline{CD}$, and $S,S_1,S_2$ are the area of the shaded regions. Prove that $$S=S_1+S_2$$




enter image description here



Any hints are welcome!







euclidean-geometry problem-solving area






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jun 12 at 18:58

























asked Jun 12 at 18:33









DiegoMath

2,0491021




2,0491021












  • Do you mean "an arbitrary convex quadrilateral"?
    – ajotatxe
    Jun 12 at 18:51










  • Yes, It should be a convex quadrilateral. I will change the statement.
    – DiegoMath
    Jun 12 at 18:57


















  • Do you mean "an arbitrary convex quadrilateral"?
    – ajotatxe
    Jun 12 at 18:51










  • Yes, It should be a convex quadrilateral. I will change the statement.
    – DiegoMath
    Jun 12 at 18:57
















Do you mean "an arbitrary convex quadrilateral"?
– ajotatxe
Jun 12 at 18:51




Do you mean "an arbitrary convex quadrilateral"?
– ajotatxe
Jun 12 at 18:51












Yes, It should be a convex quadrilateral. I will change the statement.
– DiegoMath
Jun 12 at 18:57




Yes, It should be a convex quadrilateral. I will change the statement.
– DiegoMath
Jun 12 at 18:57










2 Answers
2






active

oldest

votes

















up vote
1
down vote













I could not draw the diagram but here is the solution. Draw a dotted line from A parallel to DC. Draw dotted perpendiculars from A to DC, M to DC and also from B to DC, they intersect DC at K, G and H respectively (say). Now MG and BH also intersect the line drawn from A parallel to DC say at point E and F respectively. Now as AM = MB so AE = EF and ME = (1/2) BF, let ME = x, BF = 2x. Now say AN and MD intersect at S1 and MC and BN intersect at S2. Now



$Delta ADN = (1/2){overline{DN}}.{overline{AK}}$,



$Delta MDN = (1/2){overline{DN}}.{overline{MG}} = (1/2){overline{DN}}.({overline{AK}} + x) $,



$Delta MNC = (1/2){overline{NC}}.({overline{AK}} + x) = (1/2){overline{DN}}.({overline{AK}} + x)$,



$Delta BNC = (1/2){overline{DN}}.({overline{AK}} + 2x)$,



Now $Delta ADN = Delta ADS_1+ Delta S_1DN$,



$Delta MDN = Delta S_1DN + Delta MS_1N$,



$Delta MNC = Delta MS_2N + Delta S_2NC$,



$Delta BNC = Delta S_2NC + Delta BS_2C$



So, $Delta MDN - Delta ADN = Delta MS_1N - Delta ADS_1 = (1/2){overline{DN}}x$



$Delta BNC - Delta MNC = Delta BS_2C - Delta MS_2N = (1/2){overline{DN}}x$



So $Delta MS_1N + Delta MS_2N = Delta BS_2C + Delta ADS_1$



Note: I assumed BH > AK , but anyway it does not matter.






share|cite|improve this answer






























    up vote
    0
    down vote













    Using Shoe Lace formulas for quadrilateral and triangle, you can verify algebrically the sum of areas of triangle is area of the quadrilateral.



    A = [x1,y1]; B = [x2,y2]; C = [x3,y3]; D = [x4,y4]



    M = (1/2*x1 + 1/2*x2, 1/2*y1 + 1/2*y2)



    N = (1/2*x3 + 1/2*x4, 1/2*y3 + 1/2*y4)



    Q = [(x1*x3*y1 + x2*x3*y1 - x1*x4*y1 + x2*x4*y1 - x3*x4*y1 - x4^2*y1 - 2*x1*x4*y2 + x3*x4*y2 + x4^2*y2 - x1^2*y3 - x1*x2*y3 + 2*x1*x4*y3 + x1^2*y4 + x1*x2*y4 - x1*x3*y4 - x2*x3*y4 + x1*x4*y4 - x2*x4*y4)/(2*x2*y1 + x3*y1 - 3*x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + 3*x1*y4 - x2*y4 - 2*x3*y4), (x3*y1^2 - x4*y1^2 + x3*y1*y2 - x4*y1*y2 - x1*y1*y3 + x4*y1*y3 - x1*y2*y3 + x4*y2*y3 + x1*y1*y4 + 2*x2*y1*y4 - 2*x3*y1*y4 - x4*y1*y4 - x1*y2*y4 + x4*y2*y4 + x1*y3*y4 - x2*y3*y4 + x1*y4^2 - x2*y4^2)/(2*x2*y1 + x3*y1 - 3*x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + 3*x1*y4 - x2*y4 - 2*x3*y4)]



    R = [(2*x2*x3*y1 - x3^2*y1 - x3*x4*y1 - x1*x3*y2 + x2*x3*y2 + x3^2*y2 - x1*x4*y2 - x2*x4*y2 + x3*x4*y2 - x1*x2*y3 - x2^2*y3 + x1*x3*y3 - x2*x3*y3 + x1*x4*y3 + x2*x4*y3 + x1*x2*y4 + x2^2*y4 - 2*x2*x3*y4)/(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + 3*x3*y2 - x4*y2 + x1*y3 - 3*x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4), (x3*y1*y2 - x4*y1*y2 + x3*y2^2 - x4*y2^2 + x2*y1*y3 - x3*y1*y3 - 2*x1*y2*y3 - x2*y2*y3 + x3*y2*y3 + 2*x4*y2*y3 + x1*y3^2 - x2*y3^2 + x2*y1*y4 - x3*y1*y4 + x2*y2*y4 - x3*y2*y4 + x1*y3*y4 - x2*y3*y4)/(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + 3*x3*y2 - x4*y2 + x1*y3 - 3*x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4)]




    Area_MRNQ = QuadrilateralShoeLaceArea(M,R,N,Q)




    Area_MRNQ = -1/2*(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 + x1*y3 - x2*y3 + x1*y4 - x2*y4)*(x2*y1 - x4*y1 - x1*y2 + x3*y2 - x2*y3 + x4*y3 + x1*y4 - x3*y4)*(x3*y1 - x4*y1 + x3*y2 - x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4)/((2*x2*y1 + x3*y1 - 3*x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + 3*x1*y4 - x2*y4 - 2*x3*y4)*(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + 3*x3*y2 - x4*y2 + x1*y3 - 3*x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4))




    Area_AQD = TriangleShoeLaceArea(A,Q,D)




    Area_AQD = -1/2*(x2*y1 - x4*y1 - x1*y2 + x4*y2 + x1*y4 - x2*y4)*(x3*y1 - x4*y1 - x1*y3 + x4*y3 + x1*y4 - x3*y4)/(2*x2*y1 + x3*y1 - 3*x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + 3*x1*y4 - x2*y4 - 2*x3*y4)




    Area_BCR = TriangleShoeLaceArea(B,C,R)




    Area_BCR = -1/2*(x2*y1 - x3*y1 - x1*y2 + x3*y2 + x1*y3 - x2*y3)*(x3*y2 - x4*y2 - x2*y3 + x4*y3 + x2*y4 - x3*y4)/(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + 3*x3*y2 - x4*y2 + x1*y3 - 3*x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4)






    share|cite|improve this answer





















    • It works for any signed quadrilateral (a signed quadrilateral is a quadrilateral where you take care of clockwise orientation for computing area with the shoe lace method) ... convex or not, self intersecting or not.
      – Dominique Laurain
      Nov 17 at 18:19













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2817307%2frelating-the-areas-of-regions-determined-by-joining-midpoints-of-two-sides-of-a%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    1
    down vote













    I could not draw the diagram but here is the solution. Draw a dotted line from A parallel to DC. Draw dotted perpendiculars from A to DC, M to DC and also from B to DC, they intersect DC at K, G and H respectively (say). Now MG and BH also intersect the line drawn from A parallel to DC say at point E and F respectively. Now as AM = MB so AE = EF and ME = (1/2) BF, let ME = x, BF = 2x. Now say AN and MD intersect at S1 and MC and BN intersect at S2. Now



    $Delta ADN = (1/2){overline{DN}}.{overline{AK}}$,



    $Delta MDN = (1/2){overline{DN}}.{overline{MG}} = (1/2){overline{DN}}.({overline{AK}} + x) $,



    $Delta MNC = (1/2){overline{NC}}.({overline{AK}} + x) = (1/2){overline{DN}}.({overline{AK}} + x)$,



    $Delta BNC = (1/2){overline{DN}}.({overline{AK}} + 2x)$,



    Now $Delta ADN = Delta ADS_1+ Delta S_1DN$,



    $Delta MDN = Delta S_1DN + Delta MS_1N$,



    $Delta MNC = Delta MS_2N + Delta S_2NC$,



    $Delta BNC = Delta S_2NC + Delta BS_2C$



    So, $Delta MDN - Delta ADN = Delta MS_1N - Delta ADS_1 = (1/2){overline{DN}}x$



    $Delta BNC - Delta MNC = Delta BS_2C - Delta MS_2N = (1/2){overline{DN}}x$



    So $Delta MS_1N + Delta MS_2N = Delta BS_2C + Delta ADS_1$



    Note: I assumed BH > AK , but anyway it does not matter.






    share|cite|improve this answer



























      up vote
      1
      down vote













      I could not draw the diagram but here is the solution. Draw a dotted line from A parallel to DC. Draw dotted perpendiculars from A to DC, M to DC and also from B to DC, they intersect DC at K, G and H respectively (say). Now MG and BH also intersect the line drawn from A parallel to DC say at point E and F respectively. Now as AM = MB so AE = EF and ME = (1/2) BF, let ME = x, BF = 2x. Now say AN and MD intersect at S1 and MC and BN intersect at S2. Now



      $Delta ADN = (1/2){overline{DN}}.{overline{AK}}$,



      $Delta MDN = (1/2){overline{DN}}.{overline{MG}} = (1/2){overline{DN}}.({overline{AK}} + x) $,



      $Delta MNC = (1/2){overline{NC}}.({overline{AK}} + x) = (1/2){overline{DN}}.({overline{AK}} + x)$,



      $Delta BNC = (1/2){overline{DN}}.({overline{AK}} + 2x)$,



      Now $Delta ADN = Delta ADS_1+ Delta S_1DN$,



      $Delta MDN = Delta S_1DN + Delta MS_1N$,



      $Delta MNC = Delta MS_2N + Delta S_2NC$,



      $Delta BNC = Delta S_2NC + Delta BS_2C$



      So, $Delta MDN - Delta ADN = Delta MS_1N - Delta ADS_1 = (1/2){overline{DN}}x$



      $Delta BNC - Delta MNC = Delta BS_2C - Delta MS_2N = (1/2){overline{DN}}x$



      So $Delta MS_1N + Delta MS_2N = Delta BS_2C + Delta ADS_1$



      Note: I assumed BH > AK , but anyway it does not matter.






      share|cite|improve this answer

























        up vote
        1
        down vote










        up vote
        1
        down vote









        I could not draw the diagram but here is the solution. Draw a dotted line from A parallel to DC. Draw dotted perpendiculars from A to DC, M to DC and also from B to DC, they intersect DC at K, G and H respectively (say). Now MG and BH also intersect the line drawn from A parallel to DC say at point E and F respectively. Now as AM = MB so AE = EF and ME = (1/2) BF, let ME = x, BF = 2x. Now say AN and MD intersect at S1 and MC and BN intersect at S2. Now



        $Delta ADN = (1/2){overline{DN}}.{overline{AK}}$,



        $Delta MDN = (1/2){overline{DN}}.{overline{MG}} = (1/2){overline{DN}}.({overline{AK}} + x) $,



        $Delta MNC = (1/2){overline{NC}}.({overline{AK}} + x) = (1/2){overline{DN}}.({overline{AK}} + x)$,



        $Delta BNC = (1/2){overline{DN}}.({overline{AK}} + 2x)$,



        Now $Delta ADN = Delta ADS_1+ Delta S_1DN$,



        $Delta MDN = Delta S_1DN + Delta MS_1N$,



        $Delta MNC = Delta MS_2N + Delta S_2NC$,



        $Delta BNC = Delta S_2NC + Delta BS_2C$



        So, $Delta MDN - Delta ADN = Delta MS_1N - Delta ADS_1 = (1/2){overline{DN}}x$



        $Delta BNC - Delta MNC = Delta BS_2C - Delta MS_2N = (1/2){overline{DN}}x$



        So $Delta MS_1N + Delta MS_2N = Delta BS_2C + Delta ADS_1$



        Note: I assumed BH > AK , but anyway it does not matter.






        share|cite|improve this answer














        I could not draw the diagram but here is the solution. Draw a dotted line from A parallel to DC. Draw dotted perpendiculars from A to DC, M to DC and also from B to DC, they intersect DC at K, G and H respectively (say). Now MG and BH also intersect the line drawn from A parallel to DC say at point E and F respectively. Now as AM = MB so AE = EF and ME = (1/2) BF, let ME = x, BF = 2x. Now say AN and MD intersect at S1 and MC and BN intersect at S2. Now



        $Delta ADN = (1/2){overline{DN}}.{overline{AK}}$,



        $Delta MDN = (1/2){overline{DN}}.{overline{MG}} = (1/2){overline{DN}}.({overline{AK}} + x) $,



        $Delta MNC = (1/2){overline{NC}}.({overline{AK}} + x) = (1/2){overline{DN}}.({overline{AK}} + x)$,



        $Delta BNC = (1/2){overline{DN}}.({overline{AK}} + 2x)$,



        Now $Delta ADN = Delta ADS_1+ Delta S_1DN$,



        $Delta MDN = Delta S_1DN + Delta MS_1N$,



        $Delta MNC = Delta MS_2N + Delta S_2NC$,



        $Delta BNC = Delta S_2NC + Delta BS_2C$



        So, $Delta MDN - Delta ADN = Delta MS_1N - Delta ADS_1 = (1/2){overline{DN}}x$



        $Delta BNC - Delta MNC = Delta BS_2C - Delta MS_2N = (1/2){overline{DN}}x$



        So $Delta MS_1N + Delta MS_2N = Delta BS_2C + Delta ADS_1$



        Note: I assumed BH > AK , but anyway it does not matter.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jun 13 at 6:54

























        answered Jun 12 at 20:19









        AMITAVA

        713




        713






















            up vote
            0
            down vote













            Using Shoe Lace formulas for quadrilateral and triangle, you can verify algebrically the sum of areas of triangle is area of the quadrilateral.



            A = [x1,y1]; B = [x2,y2]; C = [x3,y3]; D = [x4,y4]



            M = (1/2*x1 + 1/2*x2, 1/2*y1 + 1/2*y2)



            N = (1/2*x3 + 1/2*x4, 1/2*y3 + 1/2*y4)



            Q = [(x1*x3*y1 + x2*x3*y1 - x1*x4*y1 + x2*x4*y1 - x3*x4*y1 - x4^2*y1 - 2*x1*x4*y2 + x3*x4*y2 + x4^2*y2 - x1^2*y3 - x1*x2*y3 + 2*x1*x4*y3 + x1^2*y4 + x1*x2*y4 - x1*x3*y4 - x2*x3*y4 + x1*x4*y4 - x2*x4*y4)/(2*x2*y1 + x3*y1 - 3*x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + 3*x1*y4 - x2*y4 - 2*x3*y4), (x3*y1^2 - x4*y1^2 + x3*y1*y2 - x4*y1*y2 - x1*y1*y3 + x4*y1*y3 - x1*y2*y3 + x4*y2*y3 + x1*y1*y4 + 2*x2*y1*y4 - 2*x3*y1*y4 - x4*y1*y4 - x1*y2*y4 + x4*y2*y4 + x1*y3*y4 - x2*y3*y4 + x1*y4^2 - x2*y4^2)/(2*x2*y1 + x3*y1 - 3*x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + 3*x1*y4 - x2*y4 - 2*x3*y4)]



            R = [(2*x2*x3*y1 - x3^2*y1 - x3*x4*y1 - x1*x3*y2 + x2*x3*y2 + x3^2*y2 - x1*x4*y2 - x2*x4*y2 + x3*x4*y2 - x1*x2*y3 - x2^2*y3 + x1*x3*y3 - x2*x3*y3 + x1*x4*y3 + x2*x4*y3 + x1*x2*y4 + x2^2*y4 - 2*x2*x3*y4)/(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + 3*x3*y2 - x4*y2 + x1*y3 - 3*x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4), (x3*y1*y2 - x4*y1*y2 + x3*y2^2 - x4*y2^2 + x2*y1*y3 - x3*y1*y3 - 2*x1*y2*y3 - x2*y2*y3 + x3*y2*y3 + 2*x4*y2*y3 + x1*y3^2 - x2*y3^2 + x2*y1*y4 - x3*y1*y4 + x2*y2*y4 - x3*y2*y4 + x1*y3*y4 - x2*y3*y4)/(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + 3*x3*y2 - x4*y2 + x1*y3 - 3*x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4)]




            Area_MRNQ = QuadrilateralShoeLaceArea(M,R,N,Q)




            Area_MRNQ = -1/2*(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 + x1*y3 - x2*y3 + x1*y4 - x2*y4)*(x2*y1 - x4*y1 - x1*y2 + x3*y2 - x2*y3 + x4*y3 + x1*y4 - x3*y4)*(x3*y1 - x4*y1 + x3*y2 - x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4)/((2*x2*y1 + x3*y1 - 3*x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + 3*x1*y4 - x2*y4 - 2*x3*y4)*(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + 3*x3*y2 - x4*y2 + x1*y3 - 3*x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4))




            Area_AQD = TriangleShoeLaceArea(A,Q,D)




            Area_AQD = -1/2*(x2*y1 - x4*y1 - x1*y2 + x4*y2 + x1*y4 - x2*y4)*(x3*y1 - x4*y1 - x1*y3 + x4*y3 + x1*y4 - x3*y4)/(2*x2*y1 + x3*y1 - 3*x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + 3*x1*y4 - x2*y4 - 2*x3*y4)




            Area_BCR = TriangleShoeLaceArea(B,C,R)




            Area_BCR = -1/2*(x2*y1 - x3*y1 - x1*y2 + x3*y2 + x1*y3 - x2*y3)*(x3*y2 - x4*y2 - x2*y3 + x4*y3 + x2*y4 - x3*y4)/(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + 3*x3*y2 - x4*y2 + x1*y3 - 3*x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4)






            share|cite|improve this answer





















            • It works for any signed quadrilateral (a signed quadrilateral is a quadrilateral where you take care of clockwise orientation for computing area with the shoe lace method) ... convex or not, self intersecting or not.
              – Dominique Laurain
              Nov 17 at 18:19

















            up vote
            0
            down vote













            Using Shoe Lace formulas for quadrilateral and triangle, you can verify algebrically the sum of areas of triangle is area of the quadrilateral.



            A = [x1,y1]; B = [x2,y2]; C = [x3,y3]; D = [x4,y4]



            M = (1/2*x1 + 1/2*x2, 1/2*y1 + 1/2*y2)



            N = (1/2*x3 + 1/2*x4, 1/2*y3 + 1/2*y4)



            Q = [(x1*x3*y1 + x2*x3*y1 - x1*x4*y1 + x2*x4*y1 - x3*x4*y1 - x4^2*y1 - 2*x1*x4*y2 + x3*x4*y2 + x4^2*y2 - x1^2*y3 - x1*x2*y3 + 2*x1*x4*y3 + x1^2*y4 + x1*x2*y4 - x1*x3*y4 - x2*x3*y4 + x1*x4*y4 - x2*x4*y4)/(2*x2*y1 + x3*y1 - 3*x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + 3*x1*y4 - x2*y4 - 2*x3*y4), (x3*y1^2 - x4*y1^2 + x3*y1*y2 - x4*y1*y2 - x1*y1*y3 + x4*y1*y3 - x1*y2*y3 + x4*y2*y3 + x1*y1*y4 + 2*x2*y1*y4 - 2*x3*y1*y4 - x4*y1*y4 - x1*y2*y4 + x4*y2*y4 + x1*y3*y4 - x2*y3*y4 + x1*y4^2 - x2*y4^2)/(2*x2*y1 + x3*y1 - 3*x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + 3*x1*y4 - x2*y4 - 2*x3*y4)]



            R = [(2*x2*x3*y1 - x3^2*y1 - x3*x4*y1 - x1*x3*y2 + x2*x3*y2 + x3^2*y2 - x1*x4*y2 - x2*x4*y2 + x3*x4*y2 - x1*x2*y3 - x2^2*y3 + x1*x3*y3 - x2*x3*y3 + x1*x4*y3 + x2*x4*y3 + x1*x2*y4 + x2^2*y4 - 2*x2*x3*y4)/(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + 3*x3*y2 - x4*y2 + x1*y3 - 3*x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4), (x3*y1*y2 - x4*y1*y2 + x3*y2^2 - x4*y2^2 + x2*y1*y3 - x3*y1*y3 - 2*x1*y2*y3 - x2*y2*y3 + x3*y2*y3 + 2*x4*y2*y3 + x1*y3^2 - x2*y3^2 + x2*y1*y4 - x3*y1*y4 + x2*y2*y4 - x3*y2*y4 + x1*y3*y4 - x2*y3*y4)/(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + 3*x3*y2 - x4*y2 + x1*y3 - 3*x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4)]




            Area_MRNQ = QuadrilateralShoeLaceArea(M,R,N,Q)




            Area_MRNQ = -1/2*(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 + x1*y3 - x2*y3 + x1*y4 - x2*y4)*(x2*y1 - x4*y1 - x1*y2 + x3*y2 - x2*y3 + x4*y3 + x1*y4 - x3*y4)*(x3*y1 - x4*y1 + x3*y2 - x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4)/((2*x2*y1 + x3*y1 - 3*x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + 3*x1*y4 - x2*y4 - 2*x3*y4)*(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + 3*x3*y2 - x4*y2 + x1*y3 - 3*x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4))




            Area_AQD = TriangleShoeLaceArea(A,Q,D)




            Area_AQD = -1/2*(x2*y1 - x4*y1 - x1*y2 + x4*y2 + x1*y4 - x2*y4)*(x3*y1 - x4*y1 - x1*y3 + x4*y3 + x1*y4 - x3*y4)/(2*x2*y1 + x3*y1 - 3*x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + 3*x1*y4 - x2*y4 - 2*x3*y4)




            Area_BCR = TriangleShoeLaceArea(B,C,R)




            Area_BCR = -1/2*(x2*y1 - x3*y1 - x1*y2 + x3*y2 + x1*y3 - x2*y3)*(x3*y2 - x4*y2 - x2*y3 + x4*y3 + x2*y4 - x3*y4)/(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + 3*x3*y2 - x4*y2 + x1*y3 - 3*x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4)






            share|cite|improve this answer





















            • It works for any signed quadrilateral (a signed quadrilateral is a quadrilateral where you take care of clockwise orientation for computing area with the shoe lace method) ... convex or not, self intersecting or not.
              – Dominique Laurain
              Nov 17 at 18:19















            up vote
            0
            down vote










            up vote
            0
            down vote









            Using Shoe Lace formulas for quadrilateral and triangle, you can verify algebrically the sum of areas of triangle is area of the quadrilateral.



            A = [x1,y1]; B = [x2,y2]; C = [x3,y3]; D = [x4,y4]



            M = (1/2*x1 + 1/2*x2, 1/2*y1 + 1/2*y2)



            N = (1/2*x3 + 1/2*x4, 1/2*y3 + 1/2*y4)



            Q = [(x1*x3*y1 + x2*x3*y1 - x1*x4*y1 + x2*x4*y1 - x3*x4*y1 - x4^2*y1 - 2*x1*x4*y2 + x3*x4*y2 + x4^2*y2 - x1^2*y3 - x1*x2*y3 + 2*x1*x4*y3 + x1^2*y4 + x1*x2*y4 - x1*x3*y4 - x2*x3*y4 + x1*x4*y4 - x2*x4*y4)/(2*x2*y1 + x3*y1 - 3*x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + 3*x1*y4 - x2*y4 - 2*x3*y4), (x3*y1^2 - x4*y1^2 + x3*y1*y2 - x4*y1*y2 - x1*y1*y3 + x4*y1*y3 - x1*y2*y3 + x4*y2*y3 + x1*y1*y4 + 2*x2*y1*y4 - 2*x3*y1*y4 - x4*y1*y4 - x1*y2*y4 + x4*y2*y4 + x1*y3*y4 - x2*y3*y4 + x1*y4^2 - x2*y4^2)/(2*x2*y1 + x3*y1 - 3*x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + 3*x1*y4 - x2*y4 - 2*x3*y4)]



            R = [(2*x2*x3*y1 - x3^2*y1 - x3*x4*y1 - x1*x3*y2 + x2*x3*y2 + x3^2*y2 - x1*x4*y2 - x2*x4*y2 + x3*x4*y2 - x1*x2*y3 - x2^2*y3 + x1*x3*y3 - x2*x3*y3 + x1*x4*y3 + x2*x4*y3 + x1*x2*y4 + x2^2*y4 - 2*x2*x3*y4)/(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + 3*x3*y2 - x4*y2 + x1*y3 - 3*x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4), (x3*y1*y2 - x4*y1*y2 + x3*y2^2 - x4*y2^2 + x2*y1*y3 - x3*y1*y3 - 2*x1*y2*y3 - x2*y2*y3 + x3*y2*y3 + 2*x4*y2*y3 + x1*y3^2 - x2*y3^2 + x2*y1*y4 - x3*y1*y4 + x2*y2*y4 - x3*y2*y4 + x1*y3*y4 - x2*y3*y4)/(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + 3*x3*y2 - x4*y2 + x1*y3 - 3*x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4)]




            Area_MRNQ = QuadrilateralShoeLaceArea(M,R,N,Q)




            Area_MRNQ = -1/2*(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 + x1*y3 - x2*y3 + x1*y4 - x2*y4)*(x2*y1 - x4*y1 - x1*y2 + x3*y2 - x2*y3 + x4*y3 + x1*y4 - x3*y4)*(x3*y1 - x4*y1 + x3*y2 - x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4)/((2*x2*y1 + x3*y1 - 3*x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + 3*x1*y4 - x2*y4 - 2*x3*y4)*(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + 3*x3*y2 - x4*y2 + x1*y3 - 3*x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4))




            Area_AQD = TriangleShoeLaceArea(A,Q,D)




            Area_AQD = -1/2*(x2*y1 - x4*y1 - x1*y2 + x4*y2 + x1*y4 - x2*y4)*(x3*y1 - x4*y1 - x1*y3 + x4*y3 + x1*y4 - x3*y4)/(2*x2*y1 + x3*y1 - 3*x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + 3*x1*y4 - x2*y4 - 2*x3*y4)




            Area_BCR = TriangleShoeLaceArea(B,C,R)




            Area_BCR = -1/2*(x2*y1 - x3*y1 - x1*y2 + x3*y2 + x1*y3 - x2*y3)*(x3*y2 - x4*y2 - x2*y3 + x4*y3 + x2*y4 - x3*y4)/(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + 3*x3*y2 - x4*y2 + x1*y3 - 3*x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4)






            share|cite|improve this answer












            Using Shoe Lace formulas for quadrilateral and triangle, you can verify algebrically the sum of areas of triangle is area of the quadrilateral.



            A = [x1,y1]; B = [x2,y2]; C = [x3,y3]; D = [x4,y4]



            M = (1/2*x1 + 1/2*x2, 1/2*y1 + 1/2*y2)



            N = (1/2*x3 + 1/2*x4, 1/2*y3 + 1/2*y4)



            Q = [(x1*x3*y1 + x2*x3*y1 - x1*x4*y1 + x2*x4*y1 - x3*x4*y1 - x4^2*y1 - 2*x1*x4*y2 + x3*x4*y2 + x4^2*y2 - x1^2*y3 - x1*x2*y3 + 2*x1*x4*y3 + x1^2*y4 + x1*x2*y4 - x1*x3*y4 - x2*x3*y4 + x1*x4*y4 - x2*x4*y4)/(2*x2*y1 + x3*y1 - 3*x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + 3*x1*y4 - x2*y4 - 2*x3*y4), (x3*y1^2 - x4*y1^2 + x3*y1*y2 - x4*y1*y2 - x1*y1*y3 + x4*y1*y3 - x1*y2*y3 + x4*y2*y3 + x1*y1*y4 + 2*x2*y1*y4 - 2*x3*y1*y4 - x4*y1*y4 - x1*y2*y4 + x4*y2*y4 + x1*y3*y4 - x2*y3*y4 + x1*y4^2 - x2*y4^2)/(2*x2*y1 + x3*y1 - 3*x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + 3*x1*y4 - x2*y4 - 2*x3*y4)]



            R = [(2*x2*x3*y1 - x3^2*y1 - x3*x4*y1 - x1*x3*y2 + x2*x3*y2 + x3^2*y2 - x1*x4*y2 - x2*x4*y2 + x3*x4*y2 - x1*x2*y3 - x2^2*y3 + x1*x3*y3 - x2*x3*y3 + x1*x4*y3 + x2*x4*y3 + x1*x2*y4 + x2^2*y4 - 2*x2*x3*y4)/(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + 3*x3*y2 - x4*y2 + x1*y3 - 3*x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4), (x3*y1*y2 - x4*y1*y2 + x3*y2^2 - x4*y2^2 + x2*y1*y3 - x3*y1*y3 - 2*x1*y2*y3 - x2*y2*y3 + x3*y2*y3 + 2*x4*y2*y3 + x1*y3^2 - x2*y3^2 + x2*y1*y4 - x3*y1*y4 + x2*y2*y4 - x3*y2*y4 + x1*y3*y4 - x2*y3*y4)/(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + 3*x3*y2 - x4*y2 + x1*y3 - 3*x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4)]




            Area_MRNQ = QuadrilateralShoeLaceArea(M,R,N,Q)




            Area_MRNQ = -1/2*(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 + x1*y3 - x2*y3 + x1*y4 - x2*y4)*(x2*y1 - x4*y1 - x1*y2 + x3*y2 - x2*y3 + x4*y3 + x1*y4 - x3*y4)*(x3*y1 - x4*y1 + x3*y2 - x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4)/((2*x2*y1 + x3*y1 - 3*x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + 3*x1*y4 - x2*y4 - 2*x3*y4)*(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + 3*x3*y2 - x4*y2 + x1*y3 - 3*x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4))




            Area_AQD = TriangleShoeLaceArea(A,Q,D)




            Area_AQD = -1/2*(x2*y1 - x4*y1 - x1*y2 + x4*y2 + x1*y4 - x2*y4)*(x3*y1 - x4*y1 - x1*y3 + x4*y3 + x1*y4 - x3*y4)/(2*x2*y1 + x3*y1 - 3*x4*y1 - 2*x1*y2 + x3*y2 + x4*y2 - x1*y3 - x2*y3 + 2*x4*y3 + 3*x1*y4 - x2*y4 - 2*x3*y4)




            Area_BCR = TriangleShoeLaceArea(B,C,R)




            Area_BCR = -1/2*(x2*y1 - x3*y1 - x1*y2 + x3*y2 + x1*y3 - x2*y3)*(x3*y2 - x4*y2 - x2*y3 + x4*y3 + x2*y4 - x3*y4)/(2*x2*y1 - x3*y1 - x4*y1 - 2*x1*y2 + 3*x3*y2 - x4*y2 + x1*y3 - 3*x2*y3 + 2*x4*y3 + x1*y4 + x2*y4 - 2*x3*y4)







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Nov 17 at 18:16









            Dominique Laurain

            472




            472












            • It works for any signed quadrilateral (a signed quadrilateral is a quadrilateral where you take care of clockwise orientation for computing area with the shoe lace method) ... convex or not, self intersecting or not.
              – Dominique Laurain
              Nov 17 at 18:19




















            • It works for any signed quadrilateral (a signed quadrilateral is a quadrilateral where you take care of clockwise orientation for computing area with the shoe lace method) ... convex or not, self intersecting or not.
              – Dominique Laurain
              Nov 17 at 18:19


















            It works for any signed quadrilateral (a signed quadrilateral is a quadrilateral where you take care of clockwise orientation for computing area with the shoe lace method) ... convex or not, self intersecting or not.
            – Dominique Laurain
            Nov 17 at 18:19






            It works for any signed quadrilateral (a signed quadrilateral is a quadrilateral where you take care of clockwise orientation for computing area with the shoe lace method) ... convex or not, self intersecting or not.
            – Dominique Laurain
            Nov 17 at 18:19




















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2817307%2frelating-the-areas-of-regions-determined-by-joining-midpoints-of-two-sides-of-a%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            AnyDesk - Fatal Program Failure

            How to calibrate 16:9 built-in touch-screen to a 4:3 resolution?

            QoS: MAC-Priority for clients behind a repeater