Solving $z^{1+i}=4$.












1














Solution:



Let $z=re^{itheta}=r(cos theta + isin theta)$. Then $z^{1+i}=e^{itheta(1+i)}=e^{itheta -theta}=4$. So $e^{itheta-theta}=e^{-theta}e^{itheta}=e^{-theta}(cos theta + isin theta)=4(cos 0 +isin 0) Longleftrightarrow e^{-theta}=4 quad text{and}quad theta =0$. But, $e^0 =1$. What am I doing wrong?



EDIT 10/26/18
Would like to provide a more systematic and traditional approach:
begin{align}
r^{1+i}e^{itheta(1+i)}&=r^{1+i}e^{-theta}(costheta + isintheta)=4(cos 0 +isin 0)=4\
r^{1+i}e^{-theta}&=4 quad text{and}quad theta=0\
log_e(r^{1+i}e^{-theta})&=log_{e}(4)\
log_(r^{1+i})+log(e^{-theta})&=log_{e}(4)\
(1+i)log_{e}(r)-theta&=log_{e}(4)\
log_{e}(r)&=frac{log_e(4)}{1+i}\
log_{e}(r)&=log_{e}(4^{frac{1}{1+i}})\
r&=4^{frac{1}{1+i}}\
r&=4^{frac{1-i}{2}}=[4^frac{1}{2}]^{1-i}=2^{1-i}
end{align}










share|cite|improve this question




















  • 1




    You completely forgot the $r^{1+i}$ part...
    – b00n heT
    Oct 24 '18 at 6:11








  • 1




    $z^{1+i}=r^{(1+i)} e^{itheta(1+i)}$
    – G.H.lee
    Oct 24 '18 at 6:11






  • 1




    What happened to $r$?
    – Carsten S
    Oct 24 '18 at 6:11










  • thanks. I'll redo it.
    – TheLast Cipher
    Oct 24 '18 at 6:12
















1














Solution:



Let $z=re^{itheta}=r(cos theta + isin theta)$. Then $z^{1+i}=e^{itheta(1+i)}=e^{itheta -theta}=4$. So $e^{itheta-theta}=e^{-theta}e^{itheta}=e^{-theta}(cos theta + isin theta)=4(cos 0 +isin 0) Longleftrightarrow e^{-theta}=4 quad text{and}quad theta =0$. But, $e^0 =1$. What am I doing wrong?



EDIT 10/26/18
Would like to provide a more systematic and traditional approach:
begin{align}
r^{1+i}e^{itheta(1+i)}&=r^{1+i}e^{-theta}(costheta + isintheta)=4(cos 0 +isin 0)=4\
r^{1+i}e^{-theta}&=4 quad text{and}quad theta=0\
log_e(r^{1+i}e^{-theta})&=log_{e}(4)\
log_(r^{1+i})+log(e^{-theta})&=log_{e}(4)\
(1+i)log_{e}(r)-theta&=log_{e}(4)\
log_{e}(r)&=frac{log_e(4)}{1+i}\
log_{e}(r)&=log_{e}(4^{frac{1}{1+i}})\
r&=4^{frac{1}{1+i}}\
r&=4^{frac{1-i}{2}}=[4^frac{1}{2}]^{1-i}=2^{1-i}
end{align}










share|cite|improve this question




















  • 1




    You completely forgot the $r^{1+i}$ part...
    – b00n heT
    Oct 24 '18 at 6:11








  • 1




    $z^{1+i}=r^{(1+i)} e^{itheta(1+i)}$
    – G.H.lee
    Oct 24 '18 at 6:11






  • 1




    What happened to $r$?
    – Carsten S
    Oct 24 '18 at 6:11










  • thanks. I'll redo it.
    – TheLast Cipher
    Oct 24 '18 at 6:12














1












1








1







Solution:



Let $z=re^{itheta}=r(cos theta + isin theta)$. Then $z^{1+i}=e^{itheta(1+i)}=e^{itheta -theta}=4$. So $e^{itheta-theta}=e^{-theta}e^{itheta}=e^{-theta}(cos theta + isin theta)=4(cos 0 +isin 0) Longleftrightarrow e^{-theta}=4 quad text{and}quad theta =0$. But, $e^0 =1$. What am I doing wrong?



EDIT 10/26/18
Would like to provide a more systematic and traditional approach:
begin{align}
r^{1+i}e^{itheta(1+i)}&=r^{1+i}e^{-theta}(costheta + isintheta)=4(cos 0 +isin 0)=4\
r^{1+i}e^{-theta}&=4 quad text{and}quad theta=0\
log_e(r^{1+i}e^{-theta})&=log_{e}(4)\
log_(r^{1+i})+log(e^{-theta})&=log_{e}(4)\
(1+i)log_{e}(r)-theta&=log_{e}(4)\
log_{e}(r)&=frac{log_e(4)}{1+i}\
log_{e}(r)&=log_{e}(4^{frac{1}{1+i}})\
r&=4^{frac{1}{1+i}}\
r&=4^{frac{1-i}{2}}=[4^frac{1}{2}]^{1-i}=2^{1-i}
end{align}










share|cite|improve this question















Solution:



Let $z=re^{itheta}=r(cos theta + isin theta)$. Then $z^{1+i}=e^{itheta(1+i)}=e^{itheta -theta}=4$. So $e^{itheta-theta}=e^{-theta}e^{itheta}=e^{-theta}(cos theta + isin theta)=4(cos 0 +isin 0) Longleftrightarrow e^{-theta}=4 quad text{and}quad theta =0$. But, $e^0 =1$. What am I doing wrong?



EDIT 10/26/18
Would like to provide a more systematic and traditional approach:
begin{align}
r^{1+i}e^{itheta(1+i)}&=r^{1+i}e^{-theta}(costheta + isintheta)=4(cos 0 +isin 0)=4\
r^{1+i}e^{-theta}&=4 quad text{and}quad theta=0\
log_e(r^{1+i}e^{-theta})&=log_{e}(4)\
log_(r^{1+i})+log(e^{-theta})&=log_{e}(4)\
(1+i)log_{e}(r)-theta&=log_{e}(4)\
log_{e}(r)&=frac{log_e(4)}{1+i}\
log_{e}(r)&=log_{e}(4^{frac{1}{1+i}})\
r&=4^{frac{1}{1+i}}\
r&=4^{frac{1-i}{2}}=[4^frac{1}{2}]^{1-i}=2^{1-i}
end{align}







complex-numbers






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Oct 26 '18 at 5:16

























asked Oct 24 '18 at 6:08









TheLast Cipher

690715




690715








  • 1




    You completely forgot the $r^{1+i}$ part...
    – b00n heT
    Oct 24 '18 at 6:11








  • 1




    $z^{1+i}=r^{(1+i)} e^{itheta(1+i)}$
    – G.H.lee
    Oct 24 '18 at 6:11






  • 1




    What happened to $r$?
    – Carsten S
    Oct 24 '18 at 6:11










  • thanks. I'll redo it.
    – TheLast Cipher
    Oct 24 '18 at 6:12














  • 1




    You completely forgot the $r^{1+i}$ part...
    – b00n heT
    Oct 24 '18 at 6:11








  • 1




    $z^{1+i}=r^{(1+i)} e^{itheta(1+i)}$
    – G.H.lee
    Oct 24 '18 at 6:11






  • 1




    What happened to $r$?
    – Carsten S
    Oct 24 '18 at 6:11










  • thanks. I'll redo it.
    – TheLast Cipher
    Oct 24 '18 at 6:12








1




1




You completely forgot the $r^{1+i}$ part...
– b00n heT
Oct 24 '18 at 6:11






You completely forgot the $r^{1+i}$ part...
– b00n heT
Oct 24 '18 at 6:11






1




1




$z^{1+i}=r^{(1+i)} e^{itheta(1+i)}$
– G.H.lee
Oct 24 '18 at 6:11




$z^{1+i}=r^{(1+i)} e^{itheta(1+i)}$
– G.H.lee
Oct 24 '18 at 6:11




1




1




What happened to $r$?
– Carsten S
Oct 24 '18 at 6:11




What happened to $r$?
– Carsten S
Oct 24 '18 at 6:11












thanks. I'll redo it.
– TheLast Cipher
Oct 24 '18 at 6:12




thanks. I'll redo it.
– TheLast Cipher
Oct 24 '18 at 6:12










3 Answers
3






active

oldest

votes


















1














$$4 = 2^2 = z^{1 + i}$$



$$2 log 2 = (1+i) log z$$



$${2 over 1+i} log 2 = log z$$



$$2^{2 over 1 + i} = z$$



$$2^{2(1-i) over (1+i)(1-i)}$$



$$2^{2(1-i) over 2} = z$$



$$2^{1 - i} = z$$



Check:



$$left( 2^{1-i}right)^{1+i} = 2^{1+1} = 2^2 = 4$$






share|cite|improve this answer























  • $$pm2=z^{(1+i)/2},(pm2)^{1-i}=?$$
    – lab bhattacharjee
    Oct 24 '18 at 6:37



















2














$4=2^2$



$2=(1-i)(1+i)$



$z^{1+i}=2^{(1-i)(1+i)}$



Taking $1+i$ th root of both sides we get:



$z=2^{1-i}$






share|cite|improve this answer





























    0














    A systematic way would go like this. Let the power function be defined as $z^a = e^{a ln z}$ and the logarithm be defined as $ln z = ln |z| + i arg z, , -pi < arg z leq pi$. $e^z$ is periodic with period $2 pi i$, therefore
    $$z^c = w ,Leftrightarrow,
    e^{c ln z} = e^{ln w} ,Leftrightarrow,
    c ln z = ln w + 2 pi i k ,Leftrightarrow \
    ln |z| + i arg z =
    operatorname{Re} zeta + i operatorname{Im} zeta ,Leftrightarrow \
    z = e^zeta land -pi < operatorname{Im} zeta leq pi, \
    text{where } zeta = frac {ln w + 2 pi i k} c,
    ;k in mathbb Z.$$

    The number of solutions will depend on $c$ and $w$. Substituting $c = 1 + i, , w = 4$ gives $-pi < pi k - ln 2 leq pi$, therefore there are two solutions $z = 2^{1 - i}$ and $z = -2^{1 - i} e^pi$, corresponding to $k = 0$ and $k = 1$.






    share|cite|improve this answer





















      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2968747%2fsolving-z1i-4%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1














      $$4 = 2^2 = z^{1 + i}$$



      $$2 log 2 = (1+i) log z$$



      $${2 over 1+i} log 2 = log z$$



      $$2^{2 over 1 + i} = z$$



      $$2^{2(1-i) over (1+i)(1-i)}$$



      $$2^{2(1-i) over 2} = z$$



      $$2^{1 - i} = z$$



      Check:



      $$left( 2^{1-i}right)^{1+i} = 2^{1+1} = 2^2 = 4$$






      share|cite|improve this answer























      • $$pm2=z^{(1+i)/2},(pm2)^{1-i}=?$$
        – lab bhattacharjee
        Oct 24 '18 at 6:37
















      1














      $$4 = 2^2 = z^{1 + i}$$



      $$2 log 2 = (1+i) log z$$



      $${2 over 1+i} log 2 = log z$$



      $$2^{2 over 1 + i} = z$$



      $$2^{2(1-i) over (1+i)(1-i)}$$



      $$2^{2(1-i) over 2} = z$$



      $$2^{1 - i} = z$$



      Check:



      $$left( 2^{1-i}right)^{1+i} = 2^{1+1} = 2^2 = 4$$






      share|cite|improve this answer























      • $$pm2=z^{(1+i)/2},(pm2)^{1-i}=?$$
        – lab bhattacharjee
        Oct 24 '18 at 6:37














      1












      1








      1






      $$4 = 2^2 = z^{1 + i}$$



      $$2 log 2 = (1+i) log z$$



      $${2 over 1+i} log 2 = log z$$



      $$2^{2 over 1 + i} = z$$



      $$2^{2(1-i) over (1+i)(1-i)}$$



      $$2^{2(1-i) over 2} = z$$



      $$2^{1 - i} = z$$



      Check:



      $$left( 2^{1-i}right)^{1+i} = 2^{1+1} = 2^2 = 4$$






      share|cite|improve this answer














      $$4 = 2^2 = z^{1 + i}$$



      $$2 log 2 = (1+i) log z$$



      $${2 over 1+i} log 2 = log z$$



      $$2^{2 over 1 + i} = z$$



      $$2^{2(1-i) over (1+i)(1-i)}$$



      $$2^{2(1-i) over 2} = z$$



      $$2^{1 - i} = z$$



      Check:



      $$left( 2^{1-i}right)^{1+i} = 2^{1+1} = 2^2 = 4$$







      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited Oct 24 '18 at 6:38

























      answered Oct 24 '18 at 6:31









      David G. Stork

      9,78721232




      9,78721232












      • $$pm2=z^{(1+i)/2},(pm2)^{1-i}=?$$
        – lab bhattacharjee
        Oct 24 '18 at 6:37


















      • $$pm2=z^{(1+i)/2},(pm2)^{1-i}=?$$
        – lab bhattacharjee
        Oct 24 '18 at 6:37
















      $$pm2=z^{(1+i)/2},(pm2)^{1-i}=?$$
      – lab bhattacharjee
      Oct 24 '18 at 6:37




      $$pm2=z^{(1+i)/2},(pm2)^{1-i}=?$$
      – lab bhattacharjee
      Oct 24 '18 at 6:37











      2














      $4=2^2$



      $2=(1-i)(1+i)$



      $z^{1+i}=2^{(1-i)(1+i)}$



      Taking $1+i$ th root of both sides we get:



      $z=2^{1-i}$






      share|cite|improve this answer


























        2














        $4=2^2$



        $2=(1-i)(1+i)$



        $z^{1+i}=2^{(1-i)(1+i)}$



        Taking $1+i$ th root of both sides we get:



        $z=2^{1-i}$






        share|cite|improve this answer
























          2












          2








          2






          $4=2^2$



          $2=(1-i)(1+i)$



          $z^{1+i}=2^{(1-i)(1+i)}$



          Taking $1+i$ th root of both sides we get:



          $z=2^{1-i}$






          share|cite|improve this answer












          $4=2^2$



          $2=(1-i)(1+i)$



          $z^{1+i}=2^{(1-i)(1+i)}$



          Taking $1+i$ th root of both sides we get:



          $z=2^{1-i}$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Oct 24 '18 at 6:39









          sirous

          1,5991513




          1,5991513























              0














              A systematic way would go like this. Let the power function be defined as $z^a = e^{a ln z}$ and the logarithm be defined as $ln z = ln |z| + i arg z, , -pi < arg z leq pi$. $e^z$ is periodic with period $2 pi i$, therefore
              $$z^c = w ,Leftrightarrow,
              e^{c ln z} = e^{ln w} ,Leftrightarrow,
              c ln z = ln w + 2 pi i k ,Leftrightarrow \
              ln |z| + i arg z =
              operatorname{Re} zeta + i operatorname{Im} zeta ,Leftrightarrow \
              z = e^zeta land -pi < operatorname{Im} zeta leq pi, \
              text{where } zeta = frac {ln w + 2 pi i k} c,
              ;k in mathbb Z.$$

              The number of solutions will depend on $c$ and $w$. Substituting $c = 1 + i, , w = 4$ gives $-pi < pi k - ln 2 leq pi$, therefore there are two solutions $z = 2^{1 - i}$ and $z = -2^{1 - i} e^pi$, corresponding to $k = 0$ and $k = 1$.






              share|cite|improve this answer


























                0














                A systematic way would go like this. Let the power function be defined as $z^a = e^{a ln z}$ and the logarithm be defined as $ln z = ln |z| + i arg z, , -pi < arg z leq pi$. $e^z$ is periodic with period $2 pi i$, therefore
                $$z^c = w ,Leftrightarrow,
                e^{c ln z} = e^{ln w} ,Leftrightarrow,
                c ln z = ln w + 2 pi i k ,Leftrightarrow \
                ln |z| + i arg z =
                operatorname{Re} zeta + i operatorname{Im} zeta ,Leftrightarrow \
                z = e^zeta land -pi < operatorname{Im} zeta leq pi, \
                text{where } zeta = frac {ln w + 2 pi i k} c,
                ;k in mathbb Z.$$

                The number of solutions will depend on $c$ and $w$. Substituting $c = 1 + i, , w = 4$ gives $-pi < pi k - ln 2 leq pi$, therefore there are two solutions $z = 2^{1 - i}$ and $z = -2^{1 - i} e^pi$, corresponding to $k = 0$ and $k = 1$.






                share|cite|improve this answer
























                  0












                  0








                  0






                  A systematic way would go like this. Let the power function be defined as $z^a = e^{a ln z}$ and the logarithm be defined as $ln z = ln |z| + i arg z, , -pi < arg z leq pi$. $e^z$ is periodic with period $2 pi i$, therefore
                  $$z^c = w ,Leftrightarrow,
                  e^{c ln z} = e^{ln w} ,Leftrightarrow,
                  c ln z = ln w + 2 pi i k ,Leftrightarrow \
                  ln |z| + i arg z =
                  operatorname{Re} zeta + i operatorname{Im} zeta ,Leftrightarrow \
                  z = e^zeta land -pi < operatorname{Im} zeta leq pi, \
                  text{where } zeta = frac {ln w + 2 pi i k} c,
                  ;k in mathbb Z.$$

                  The number of solutions will depend on $c$ and $w$. Substituting $c = 1 + i, , w = 4$ gives $-pi < pi k - ln 2 leq pi$, therefore there are two solutions $z = 2^{1 - i}$ and $z = -2^{1 - i} e^pi$, corresponding to $k = 0$ and $k = 1$.






                  share|cite|improve this answer












                  A systematic way would go like this. Let the power function be defined as $z^a = e^{a ln z}$ and the logarithm be defined as $ln z = ln |z| + i arg z, , -pi < arg z leq pi$. $e^z$ is periodic with period $2 pi i$, therefore
                  $$z^c = w ,Leftrightarrow,
                  e^{c ln z} = e^{ln w} ,Leftrightarrow,
                  c ln z = ln w + 2 pi i k ,Leftrightarrow \
                  ln |z| + i arg z =
                  operatorname{Re} zeta + i operatorname{Im} zeta ,Leftrightarrow \
                  z = e^zeta land -pi < operatorname{Im} zeta leq pi, \
                  text{where } zeta = frac {ln w + 2 pi i k} c,
                  ;k in mathbb Z.$$

                  The number of solutions will depend on $c$ and $w$. Substituting $c = 1 + i, , w = 4$ gives $-pi < pi k - ln 2 leq pi$, therefore there are two solutions $z = 2^{1 - i}$ and $z = -2^{1 - i} e^pi$, corresponding to $k = 0$ and $k = 1$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Nov 19 '18 at 4:15









                  Maxim

                  4,5031219




                  4,5031219






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.





                      Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                      Please pay close attention to the following guidance:


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2968747%2fsolving-z1i-4%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      QoS: MAC-Priority for clients behind a repeater

                      Ивакино (Тотемский район)

                      Can't locate Autom4te/ChannelDefs.pm in @INC (when it definitely is there)