$1+frac {1}{4}(1+frac {1}{4}) +frac {1}{9}(1+frac {1}{4} +frac {1}{9})+…$
up vote
7
down vote
favorite
Show that $$1+frac {1}{4} bigg(1+frac {1}{4}bigg) +frac {1}{9} bigg(1+frac {1}{4} +frac {1}{9}bigg)+.....$$
converges.
Can you find the exact value of the sum.
My effort:
I have proved the convergence with comparing to $$bigg(sum _1^infty frac {1}{n^2}bigg)^2$$
I have not figure out the exact sum.
Any suggestions??
calculus sequences-and-series convergence
add a comment |
up vote
7
down vote
favorite
Show that $$1+frac {1}{4} bigg(1+frac {1}{4}bigg) +frac {1}{9} bigg(1+frac {1}{4} +frac {1}{9}bigg)+.....$$
converges.
Can you find the exact value of the sum.
My effort:
I have proved the convergence with comparing to $$bigg(sum _1^infty frac {1}{n^2}bigg)^2$$
I have not figure out the exact sum.
Any suggestions??
calculus sequences-and-series convergence
The sum is equal to $sum_nfrac{lceil d(n)/2rceil}{n^2}$, if this helps.
– ajotatxe
Nov 15 at 16:19
According to Mathematica, $sum _{n=1}^{infty } frac{sum _{i=1}^n frac{1}{i^2}}{n^2}={7pi^4over360}$. Maybe this gives you an idea of how to derive the sum.
– Steve Kass
Nov 15 at 16:26
@SteveKass It should be related to $zeta(4)$
– ajotatxe
Nov 15 at 16:28
@SteveKass Thanks for the comment, yes sometimes the answer helps to figure out a solution.
– Mohammad Riazi-Kermani
Nov 15 at 16:28
add a comment |
up vote
7
down vote
favorite
up vote
7
down vote
favorite
Show that $$1+frac {1}{4} bigg(1+frac {1}{4}bigg) +frac {1}{9} bigg(1+frac {1}{4} +frac {1}{9}bigg)+.....$$
converges.
Can you find the exact value of the sum.
My effort:
I have proved the convergence with comparing to $$bigg(sum _1^infty frac {1}{n^2}bigg)^2$$
I have not figure out the exact sum.
Any suggestions??
calculus sequences-and-series convergence
Show that $$1+frac {1}{4} bigg(1+frac {1}{4}bigg) +frac {1}{9} bigg(1+frac {1}{4} +frac {1}{9}bigg)+.....$$
converges.
Can you find the exact value of the sum.
My effort:
I have proved the convergence with comparing to $$bigg(sum _1^infty frac {1}{n^2}bigg)^2$$
I have not figure out the exact sum.
Any suggestions??
calculus sequences-and-series convergence
calculus sequences-and-series convergence
edited Nov 15 at 16:14
Rebellos
11.5k21040
11.5k21040
asked Nov 15 at 16:11
Mohammad Riazi-Kermani
40.2k41958
40.2k41958
The sum is equal to $sum_nfrac{lceil d(n)/2rceil}{n^2}$, if this helps.
– ajotatxe
Nov 15 at 16:19
According to Mathematica, $sum _{n=1}^{infty } frac{sum _{i=1}^n frac{1}{i^2}}{n^2}={7pi^4over360}$. Maybe this gives you an idea of how to derive the sum.
– Steve Kass
Nov 15 at 16:26
@SteveKass It should be related to $zeta(4)$
– ajotatxe
Nov 15 at 16:28
@SteveKass Thanks for the comment, yes sometimes the answer helps to figure out a solution.
– Mohammad Riazi-Kermani
Nov 15 at 16:28
add a comment |
The sum is equal to $sum_nfrac{lceil d(n)/2rceil}{n^2}$, if this helps.
– ajotatxe
Nov 15 at 16:19
According to Mathematica, $sum _{n=1}^{infty } frac{sum _{i=1}^n frac{1}{i^2}}{n^2}={7pi^4over360}$. Maybe this gives you an idea of how to derive the sum.
– Steve Kass
Nov 15 at 16:26
@SteveKass It should be related to $zeta(4)$
– ajotatxe
Nov 15 at 16:28
@SteveKass Thanks for the comment, yes sometimes the answer helps to figure out a solution.
– Mohammad Riazi-Kermani
Nov 15 at 16:28
The sum is equal to $sum_nfrac{lceil d(n)/2rceil}{n^2}$, if this helps.
– ajotatxe
Nov 15 at 16:19
The sum is equal to $sum_nfrac{lceil d(n)/2rceil}{n^2}$, if this helps.
– ajotatxe
Nov 15 at 16:19
According to Mathematica, $sum _{n=1}^{infty } frac{sum _{i=1}^n frac{1}{i^2}}{n^2}={7pi^4over360}$. Maybe this gives you an idea of how to derive the sum.
– Steve Kass
Nov 15 at 16:26
According to Mathematica, $sum _{n=1}^{infty } frac{sum _{i=1}^n frac{1}{i^2}}{n^2}={7pi^4over360}$. Maybe this gives you an idea of how to derive the sum.
– Steve Kass
Nov 15 at 16:26
@SteveKass It should be related to $zeta(4)$
– ajotatxe
Nov 15 at 16:28
@SteveKass It should be related to $zeta(4)$
– ajotatxe
Nov 15 at 16:28
@SteveKass Thanks for the comment, yes sometimes the answer helps to figure out a solution.
– Mohammad Riazi-Kermani
Nov 15 at 16:28
@SteveKass Thanks for the comment, yes sometimes the answer helps to figure out a solution.
– Mohammad Riazi-Kermani
Nov 15 at 16:28
add a comment |
2 Answers
2
active
oldest
votes
up vote
6
down vote
accepted
$$
2S = sum_{ileq j} frac{1}{i^{2}j^{2}} + sum_{igeq j} frac{1}{i^{2}j^{2}} = left(sum_{ngeq 1}frac{1}{n^{2}}right)^{2} + sum_{ngeq 1}frac{1}{n^{4}} = frac{pi^{4}}{36} + frac{pi^{4}}{90}
$$
1
@Seewood Lee Good answer, thanks.
– Mohammad Riazi-Kermani
Nov 15 at 16:32
1
We can generalize the result to $$sum_{ile j}frac{1}{i^r j^r}=frac12left(zeta(r)^2+zeta(2r)right).$$
– Tianlalu
Nov 15 at 16:43
add a comment |
up vote
2
down vote
Suppose that $sum_{i=0}^infty a_i$ is an absolutely convergent series. Then (where $i$ and $j$ range over the nonnegative integers)
$$2sum_{i<=j} a_ia_j=\
2sum_{i<j} a_ia_j+2sum_{i=j} a_ia_j=\
sum_{i<j} a_ia_j+sum_{i>j} a_ia_j+color{green}{2sum_{i=j} a_ia_j}=\
left(sum_{i<j} a_ia_j+color{green}{sum_{i=j} a_ia_j}+sum_{i>j} a_ia_jright)+color{green}{sum_{i=j} a_ia_j}=\
color{red}{{sum_{i,j} a_ia_j}}+color{blue}{sum_{i=j} a_ia_j}=\
color{red}{left(sum_{i} a_iright)^2}+color{blue}{sum_{i} (a_i)^2}.$$
The question here is answered by this identity for $displaystyle a_i={1over i^2}$.
Very beautiful, thank for the answer..
– Mohammad Riazi-Kermani
Nov 15 at 21:33
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
6
down vote
accepted
$$
2S = sum_{ileq j} frac{1}{i^{2}j^{2}} + sum_{igeq j} frac{1}{i^{2}j^{2}} = left(sum_{ngeq 1}frac{1}{n^{2}}right)^{2} + sum_{ngeq 1}frac{1}{n^{4}} = frac{pi^{4}}{36} + frac{pi^{4}}{90}
$$
1
@Seewood Lee Good answer, thanks.
– Mohammad Riazi-Kermani
Nov 15 at 16:32
1
We can generalize the result to $$sum_{ile j}frac{1}{i^r j^r}=frac12left(zeta(r)^2+zeta(2r)right).$$
– Tianlalu
Nov 15 at 16:43
add a comment |
up vote
6
down vote
accepted
$$
2S = sum_{ileq j} frac{1}{i^{2}j^{2}} + sum_{igeq j} frac{1}{i^{2}j^{2}} = left(sum_{ngeq 1}frac{1}{n^{2}}right)^{2} + sum_{ngeq 1}frac{1}{n^{4}} = frac{pi^{4}}{36} + frac{pi^{4}}{90}
$$
1
@Seewood Lee Good answer, thanks.
– Mohammad Riazi-Kermani
Nov 15 at 16:32
1
We can generalize the result to $$sum_{ile j}frac{1}{i^r j^r}=frac12left(zeta(r)^2+zeta(2r)right).$$
– Tianlalu
Nov 15 at 16:43
add a comment |
up vote
6
down vote
accepted
up vote
6
down vote
accepted
$$
2S = sum_{ileq j} frac{1}{i^{2}j^{2}} + sum_{igeq j} frac{1}{i^{2}j^{2}} = left(sum_{ngeq 1}frac{1}{n^{2}}right)^{2} + sum_{ngeq 1}frac{1}{n^{4}} = frac{pi^{4}}{36} + frac{pi^{4}}{90}
$$
$$
2S = sum_{ileq j} frac{1}{i^{2}j^{2}} + sum_{igeq j} frac{1}{i^{2}j^{2}} = left(sum_{ngeq 1}frac{1}{n^{2}}right)^{2} + sum_{ngeq 1}frac{1}{n^{4}} = frac{pi^{4}}{36} + frac{pi^{4}}{90}
$$
answered Nov 15 at 16:28
Seewoo Lee
5,756825
5,756825
1
@Seewood Lee Good answer, thanks.
– Mohammad Riazi-Kermani
Nov 15 at 16:32
1
We can generalize the result to $$sum_{ile j}frac{1}{i^r j^r}=frac12left(zeta(r)^2+zeta(2r)right).$$
– Tianlalu
Nov 15 at 16:43
add a comment |
1
@Seewood Lee Good answer, thanks.
– Mohammad Riazi-Kermani
Nov 15 at 16:32
1
We can generalize the result to $$sum_{ile j}frac{1}{i^r j^r}=frac12left(zeta(r)^2+zeta(2r)right).$$
– Tianlalu
Nov 15 at 16:43
1
1
@Seewood Lee Good answer, thanks.
– Mohammad Riazi-Kermani
Nov 15 at 16:32
@Seewood Lee Good answer, thanks.
– Mohammad Riazi-Kermani
Nov 15 at 16:32
1
1
We can generalize the result to $$sum_{ile j}frac{1}{i^r j^r}=frac12left(zeta(r)^2+zeta(2r)right).$$
– Tianlalu
Nov 15 at 16:43
We can generalize the result to $$sum_{ile j}frac{1}{i^r j^r}=frac12left(zeta(r)^2+zeta(2r)right).$$
– Tianlalu
Nov 15 at 16:43
add a comment |
up vote
2
down vote
Suppose that $sum_{i=0}^infty a_i$ is an absolutely convergent series. Then (where $i$ and $j$ range over the nonnegative integers)
$$2sum_{i<=j} a_ia_j=\
2sum_{i<j} a_ia_j+2sum_{i=j} a_ia_j=\
sum_{i<j} a_ia_j+sum_{i>j} a_ia_j+color{green}{2sum_{i=j} a_ia_j}=\
left(sum_{i<j} a_ia_j+color{green}{sum_{i=j} a_ia_j}+sum_{i>j} a_ia_jright)+color{green}{sum_{i=j} a_ia_j}=\
color{red}{{sum_{i,j} a_ia_j}}+color{blue}{sum_{i=j} a_ia_j}=\
color{red}{left(sum_{i} a_iright)^2}+color{blue}{sum_{i} (a_i)^2}.$$
The question here is answered by this identity for $displaystyle a_i={1over i^2}$.
Very beautiful, thank for the answer..
– Mohammad Riazi-Kermani
Nov 15 at 21:33
add a comment |
up vote
2
down vote
Suppose that $sum_{i=0}^infty a_i$ is an absolutely convergent series. Then (where $i$ and $j$ range over the nonnegative integers)
$$2sum_{i<=j} a_ia_j=\
2sum_{i<j} a_ia_j+2sum_{i=j} a_ia_j=\
sum_{i<j} a_ia_j+sum_{i>j} a_ia_j+color{green}{2sum_{i=j} a_ia_j}=\
left(sum_{i<j} a_ia_j+color{green}{sum_{i=j} a_ia_j}+sum_{i>j} a_ia_jright)+color{green}{sum_{i=j} a_ia_j}=\
color{red}{{sum_{i,j} a_ia_j}}+color{blue}{sum_{i=j} a_ia_j}=\
color{red}{left(sum_{i} a_iright)^2}+color{blue}{sum_{i} (a_i)^2}.$$
The question here is answered by this identity for $displaystyle a_i={1over i^2}$.
Very beautiful, thank for the answer..
– Mohammad Riazi-Kermani
Nov 15 at 21:33
add a comment |
up vote
2
down vote
up vote
2
down vote
Suppose that $sum_{i=0}^infty a_i$ is an absolutely convergent series. Then (where $i$ and $j$ range over the nonnegative integers)
$$2sum_{i<=j} a_ia_j=\
2sum_{i<j} a_ia_j+2sum_{i=j} a_ia_j=\
sum_{i<j} a_ia_j+sum_{i>j} a_ia_j+color{green}{2sum_{i=j} a_ia_j}=\
left(sum_{i<j} a_ia_j+color{green}{sum_{i=j} a_ia_j}+sum_{i>j} a_ia_jright)+color{green}{sum_{i=j} a_ia_j}=\
color{red}{{sum_{i,j} a_ia_j}}+color{blue}{sum_{i=j} a_ia_j}=\
color{red}{left(sum_{i} a_iright)^2}+color{blue}{sum_{i} (a_i)^2}.$$
The question here is answered by this identity for $displaystyle a_i={1over i^2}$.
Suppose that $sum_{i=0}^infty a_i$ is an absolutely convergent series. Then (where $i$ and $j$ range over the nonnegative integers)
$$2sum_{i<=j} a_ia_j=\
2sum_{i<j} a_ia_j+2sum_{i=j} a_ia_j=\
sum_{i<j} a_ia_j+sum_{i>j} a_ia_j+color{green}{2sum_{i=j} a_ia_j}=\
left(sum_{i<j} a_ia_j+color{green}{sum_{i=j} a_ia_j}+sum_{i>j} a_ia_jright)+color{green}{sum_{i=j} a_ia_j}=\
color{red}{{sum_{i,j} a_ia_j}}+color{blue}{sum_{i=j} a_ia_j}=\
color{red}{left(sum_{i} a_iright)^2}+color{blue}{sum_{i} (a_i)^2}.$$
The question here is answered by this identity for $displaystyle a_i={1over i^2}$.
answered Nov 15 at 21:22
Steve Kass
10.8k11429
10.8k11429
Very beautiful, thank for the answer..
– Mohammad Riazi-Kermani
Nov 15 at 21:33
add a comment |
Very beautiful, thank for the answer..
– Mohammad Riazi-Kermani
Nov 15 at 21:33
Very beautiful, thank for the answer..
– Mohammad Riazi-Kermani
Nov 15 at 21:33
Very beautiful, thank for the answer..
– Mohammad Riazi-Kermani
Nov 15 at 21:33
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999887%2f1-frac-141-frac-14-frac-191-frac-14-frac-19%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
The sum is equal to $sum_nfrac{lceil d(n)/2rceil}{n^2}$, if this helps.
– ajotatxe
Nov 15 at 16:19
According to Mathematica, $sum _{n=1}^{infty } frac{sum _{i=1}^n frac{1}{i^2}}{n^2}={7pi^4over360}$. Maybe this gives you an idea of how to derive the sum.
– Steve Kass
Nov 15 at 16:26
@SteveKass It should be related to $zeta(4)$
– ajotatxe
Nov 15 at 16:28
@SteveKass Thanks for the comment, yes sometimes the answer helps to figure out a solution.
– Mohammad Riazi-Kermani
Nov 15 at 16:28