the group homomorphism $f:Grightarrow H$ is exactly then an injection when $ker(f)=eG$
up vote
0
down vote
favorite
I have to show that a group homomorphism $f:Grightarrow H$ is a injective function when $ker(f):=[uin G:f(u)=eH]=eG$,$:e$ is the neutral element.
Attempt:
If we take $ker(f)={a}$
$f(a#b)=f(a)*f(b)$
$f(a#b)=eH*f(b)=eH$
$implies ker(f)=[a,(aneq b)]$ then it wouldnt be an injection
but if $ker(f)=eG$ then it works
$f(eG#b)=f(eG)*f(b)$
$f(eG) =eH*f(b)=eH$
is that correct?
linear-algebra group-homomorphism
add a comment |
up vote
0
down vote
favorite
I have to show that a group homomorphism $f:Grightarrow H$ is a injective function when $ker(f):=[uin G:f(u)=eH]=eG$,$:e$ is the neutral element.
Attempt:
If we take $ker(f)={a}$
$f(a#b)=f(a)*f(b)$
$f(a#b)=eH*f(b)=eH$
$implies ker(f)=[a,(aneq b)]$ then it wouldnt be an injection
but if $ker(f)=eG$ then it works
$f(eG#b)=f(eG)*f(b)$
$f(eG) =eH*f(b)=eH$
is that correct?
linear-algebra group-homomorphism
Welcome to MSE! Please use mathjax for typing.
– Wuestenfux
Nov 16 at 9:03
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I have to show that a group homomorphism $f:Grightarrow H$ is a injective function when $ker(f):=[uin G:f(u)=eH]=eG$,$:e$ is the neutral element.
Attempt:
If we take $ker(f)={a}$
$f(a#b)=f(a)*f(b)$
$f(a#b)=eH*f(b)=eH$
$implies ker(f)=[a,(aneq b)]$ then it wouldnt be an injection
but if $ker(f)=eG$ then it works
$f(eG#b)=f(eG)*f(b)$
$f(eG) =eH*f(b)=eH$
is that correct?
linear-algebra group-homomorphism
I have to show that a group homomorphism $f:Grightarrow H$ is a injective function when $ker(f):=[uin G:f(u)=eH]=eG$,$:e$ is the neutral element.
Attempt:
If we take $ker(f)={a}$
$f(a#b)=f(a)*f(b)$
$f(a#b)=eH*f(b)=eH$
$implies ker(f)=[a,(aneq b)]$ then it wouldnt be an injection
but if $ker(f)=eG$ then it works
$f(eG#b)=f(eG)*f(b)$
$f(eG) =eH*f(b)=eH$
is that correct?
linear-algebra group-homomorphism
linear-algebra group-homomorphism
edited Nov 16 at 9:02
Yadati Kiran
1,049317
1,049317
asked Nov 16 at 8:51
mimon67
11
11
Welcome to MSE! Please use mathjax for typing.
– Wuestenfux
Nov 16 at 9:03
add a comment |
Welcome to MSE! Please use mathjax for typing.
– Wuestenfux
Nov 16 at 9:03
Welcome to MSE! Please use mathjax for typing.
– Wuestenfux
Nov 16 at 9:03
Welcome to MSE! Please use mathjax for typing.
– Wuestenfux
Nov 16 at 9:03
add a comment |
1 Answer
1
active
oldest
votes
up vote
0
down vote
$ker(f)={xin G : f(x)=e^*}$ where $e^*$ is the identity element of $H$. Its given $ker(f)={e}$. $f(x)=f(g)implies f(xg^{-1})=f(g)f(g^{-1})implies f(xg^{-1})=f(e)=e^*implies x=g $.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
$ker(f)={xin G : f(x)=e^*}$ where $e^*$ is the identity element of $H$. Its given $ker(f)={e}$. $f(x)=f(g)implies f(xg^{-1})=f(g)f(g^{-1})implies f(xg^{-1})=f(e)=e^*implies x=g $.
add a comment |
up vote
0
down vote
$ker(f)={xin G : f(x)=e^*}$ where $e^*$ is the identity element of $H$. Its given $ker(f)={e}$. $f(x)=f(g)implies f(xg^{-1})=f(g)f(g^{-1})implies f(xg^{-1})=f(e)=e^*implies x=g $.
add a comment |
up vote
0
down vote
up vote
0
down vote
$ker(f)={xin G : f(x)=e^*}$ where $e^*$ is the identity element of $H$. Its given $ker(f)={e}$. $f(x)=f(g)implies f(xg^{-1})=f(g)f(g^{-1})implies f(xg^{-1})=f(e)=e^*implies x=g $.
$ker(f)={xin G : f(x)=e^*}$ where $e^*$ is the identity element of $H$. Its given $ker(f)={e}$. $f(x)=f(g)implies f(xg^{-1})=f(g)f(g^{-1})implies f(xg^{-1})=f(e)=e^*implies x=g $.
answered Nov 16 at 9:05
Yadati Kiran
1,049317
1,049317
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3000910%2fthe-group-homomorphism-fg-rightarrow-h-is-exactly-then-an-injection-when-ker%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Welcome to MSE! Please use mathjax for typing.
– Wuestenfux
Nov 16 at 9:03