the group homomorphism $f:Grightarrow H$ is exactly then an injection when $ker(f)=eG$











up vote
0
down vote

favorite












I have to show that a group homomorphism $f:Grightarrow H$ is a injective function when $ker(f):=[uin G:f(u)=eH]=eG$,$:e$ is the neutral element.



Attempt:
If we take $ker(f)={a}$



$f(a#b)=f(a)*f(b)$



$f(a#b)=eH*f(b)=eH$
$implies ker(f)=[a,(aneq b)]$ then it wouldnt be an injection



but if $ker(f)=eG$ then it works



$f(eG#b)=f(eG)*f(b)$



$f(eG) =eH*f(b)=eH$
is that correct?










share|cite|improve this question
























  • Welcome to MSE! Please use mathjax for typing.
    – Wuestenfux
    Nov 16 at 9:03















up vote
0
down vote

favorite












I have to show that a group homomorphism $f:Grightarrow H$ is a injective function when $ker(f):=[uin G:f(u)=eH]=eG$,$:e$ is the neutral element.



Attempt:
If we take $ker(f)={a}$



$f(a#b)=f(a)*f(b)$



$f(a#b)=eH*f(b)=eH$
$implies ker(f)=[a,(aneq b)]$ then it wouldnt be an injection



but if $ker(f)=eG$ then it works



$f(eG#b)=f(eG)*f(b)$



$f(eG) =eH*f(b)=eH$
is that correct?










share|cite|improve this question
























  • Welcome to MSE! Please use mathjax for typing.
    – Wuestenfux
    Nov 16 at 9:03













up vote
0
down vote

favorite









up vote
0
down vote

favorite











I have to show that a group homomorphism $f:Grightarrow H$ is a injective function when $ker(f):=[uin G:f(u)=eH]=eG$,$:e$ is the neutral element.



Attempt:
If we take $ker(f)={a}$



$f(a#b)=f(a)*f(b)$



$f(a#b)=eH*f(b)=eH$
$implies ker(f)=[a,(aneq b)]$ then it wouldnt be an injection



but if $ker(f)=eG$ then it works



$f(eG#b)=f(eG)*f(b)$



$f(eG) =eH*f(b)=eH$
is that correct?










share|cite|improve this question















I have to show that a group homomorphism $f:Grightarrow H$ is a injective function when $ker(f):=[uin G:f(u)=eH]=eG$,$:e$ is the neutral element.



Attempt:
If we take $ker(f)={a}$



$f(a#b)=f(a)*f(b)$



$f(a#b)=eH*f(b)=eH$
$implies ker(f)=[a,(aneq b)]$ then it wouldnt be an injection



but if $ker(f)=eG$ then it works



$f(eG#b)=f(eG)*f(b)$



$f(eG) =eH*f(b)=eH$
is that correct?







linear-algebra group-homomorphism






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 16 at 9:02









Yadati Kiran

1,049317




1,049317










asked Nov 16 at 8:51









mimon67

11




11












  • Welcome to MSE! Please use mathjax for typing.
    – Wuestenfux
    Nov 16 at 9:03


















  • Welcome to MSE! Please use mathjax for typing.
    – Wuestenfux
    Nov 16 at 9:03
















Welcome to MSE! Please use mathjax for typing.
– Wuestenfux
Nov 16 at 9:03




Welcome to MSE! Please use mathjax for typing.
– Wuestenfux
Nov 16 at 9:03










1 Answer
1






active

oldest

votes

















up vote
0
down vote













$ker(f)={xin G : f(x)=e^*}$ where $e^*$ is the identity element of $H$. Its given $ker(f)={e}$. $f(x)=f(g)implies f(xg^{-1})=f(g)f(g^{-1})implies f(xg^{-1})=f(e)=e^*implies x=g $.






share|cite|improve this answer





















    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














     

    draft saved


    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3000910%2fthe-group-homomorphism-fg-rightarrow-h-is-exactly-then-an-injection-when-ker%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    0
    down vote













    $ker(f)={xin G : f(x)=e^*}$ where $e^*$ is the identity element of $H$. Its given $ker(f)={e}$. $f(x)=f(g)implies f(xg^{-1})=f(g)f(g^{-1})implies f(xg^{-1})=f(e)=e^*implies x=g $.






    share|cite|improve this answer

























      up vote
      0
      down vote













      $ker(f)={xin G : f(x)=e^*}$ where $e^*$ is the identity element of $H$. Its given $ker(f)={e}$. $f(x)=f(g)implies f(xg^{-1})=f(g)f(g^{-1})implies f(xg^{-1})=f(e)=e^*implies x=g $.






      share|cite|improve this answer























        up vote
        0
        down vote










        up vote
        0
        down vote









        $ker(f)={xin G : f(x)=e^*}$ where $e^*$ is the identity element of $H$. Its given $ker(f)={e}$. $f(x)=f(g)implies f(xg^{-1})=f(g)f(g^{-1})implies f(xg^{-1})=f(e)=e^*implies x=g $.






        share|cite|improve this answer












        $ker(f)={xin G : f(x)=e^*}$ where $e^*$ is the identity element of $H$. Its given $ker(f)={e}$. $f(x)=f(g)implies f(xg^{-1})=f(g)f(g^{-1})implies f(xg^{-1})=f(e)=e^*implies x=g $.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Nov 16 at 9:05









        Yadati Kiran

        1,049317




        1,049317






























             

            draft saved


            draft discarded



















































             


            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3000910%2fthe-group-homomorphism-fg-rightarrow-h-is-exactly-then-an-injection-when-ker%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            AnyDesk - Fatal Program Failure

            How to calibrate 16:9 built-in touch-screen to a 4:3 resolution?

            QoS: MAC-Priority for clients behind a repeater