How to calculate all possible values for $m$, where $m=i^k mod p$, $k,p$ are fixed?











up vote
1
down vote

favorite












For example, all possible values for $i^{10} mod 71$ is $1, 20, 30, 32, 37, 45, 48$. Is it possible to directly calculate these values without trying all possible $i$ from 1 to 71?










share|cite|improve this question


























    up vote
    1
    down vote

    favorite












    For example, all possible values for $i^{10} mod 71$ is $1, 20, 30, 32, 37, 45, 48$. Is it possible to directly calculate these values without trying all possible $i$ from 1 to 71?










    share|cite|improve this question
























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      For example, all possible values for $i^{10} mod 71$ is $1, 20, 30, 32, 37, 45, 48$. Is it possible to directly calculate these values without trying all possible $i$ from 1 to 71?










      share|cite|improve this question













      For example, all possible values for $i^{10} mod 71$ is $1, 20, 30, 32, 37, 45, 48$. Is it possible to directly calculate these values without trying all possible $i$ from 1 to 71?







      elementary-number-theory modular-arithmetic






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked yesterday









      Mayoi

      183




      183






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          1
          down vote



          accepted










          In this case $71-1=70$, so as the nonzero residues modulo $71$ form a cyclic
          group of order $70$, the tenth powers form a cyclic group of order $7$.
          So once you have one non-trivial value, say $10$, then $10^0$, $10^1$,
          $10^2,ldots,10^6$ are all of them.






          share|cite|improve this answer





















          • for $i^{374}mod 331$, the full answer is $1, 4, 16, 31, 64, 83, 124, 150, 165, 203, 256, 269, 299, 323, 329$. However, if we take $31$, $64$ to generate the list, only part of the answer can be obtained (of length 3 and 5, while the full answer has 15). Could you elaborate how to deal with this case? Thanks.
            – Mayoi
            yesterday












          • using the primitive root works, never mind.
            – Mayoi
            23 hours ago











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999380%2fhow-to-calculate-all-possible-values-for-m-where-m-ik-mod-p-k-p-are-fi%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          1
          down vote



          accepted










          In this case $71-1=70$, so as the nonzero residues modulo $71$ form a cyclic
          group of order $70$, the tenth powers form a cyclic group of order $7$.
          So once you have one non-trivial value, say $10$, then $10^0$, $10^1$,
          $10^2,ldots,10^6$ are all of them.






          share|cite|improve this answer





















          • for $i^{374}mod 331$, the full answer is $1, 4, 16, 31, 64, 83, 124, 150, 165, 203, 256, 269, 299, 323, 329$. However, if we take $31$, $64$ to generate the list, only part of the answer can be obtained (of length 3 and 5, while the full answer has 15). Could you elaborate how to deal with this case? Thanks.
            – Mayoi
            yesterday












          • using the primitive root works, never mind.
            – Mayoi
            23 hours ago















          up vote
          1
          down vote



          accepted










          In this case $71-1=70$, so as the nonzero residues modulo $71$ form a cyclic
          group of order $70$, the tenth powers form a cyclic group of order $7$.
          So once you have one non-trivial value, say $10$, then $10^0$, $10^1$,
          $10^2,ldots,10^6$ are all of them.






          share|cite|improve this answer





















          • for $i^{374}mod 331$, the full answer is $1, 4, 16, 31, 64, 83, 124, 150, 165, 203, 256, 269, 299, 323, 329$. However, if we take $31$, $64$ to generate the list, only part of the answer can be obtained (of length 3 and 5, while the full answer has 15). Could you elaborate how to deal with this case? Thanks.
            – Mayoi
            yesterday












          • using the primitive root works, never mind.
            – Mayoi
            23 hours ago













          up vote
          1
          down vote



          accepted







          up vote
          1
          down vote



          accepted






          In this case $71-1=70$, so as the nonzero residues modulo $71$ form a cyclic
          group of order $70$, the tenth powers form a cyclic group of order $7$.
          So once you have one non-trivial value, say $10$, then $10^0$, $10^1$,
          $10^2,ldots,10^6$ are all of them.






          share|cite|improve this answer












          In this case $71-1=70$, so as the nonzero residues modulo $71$ form a cyclic
          group of order $70$, the tenth powers form a cyclic group of order $7$.
          So once you have one non-trivial value, say $10$, then $10^0$, $10^1$,
          $10^2,ldots,10^6$ are all of them.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered yesterday









          Lord Shark the Unknown

          96.5k958128




          96.5k958128












          • for $i^{374}mod 331$, the full answer is $1, 4, 16, 31, 64, 83, 124, 150, 165, 203, 256, 269, 299, 323, 329$. However, if we take $31$, $64$ to generate the list, only part of the answer can be obtained (of length 3 and 5, while the full answer has 15). Could you elaborate how to deal with this case? Thanks.
            – Mayoi
            yesterday












          • using the primitive root works, never mind.
            – Mayoi
            23 hours ago


















          • for $i^{374}mod 331$, the full answer is $1, 4, 16, 31, 64, 83, 124, 150, 165, 203, 256, 269, 299, 323, 329$. However, if we take $31$, $64$ to generate the list, only part of the answer can be obtained (of length 3 and 5, while the full answer has 15). Could you elaborate how to deal with this case? Thanks.
            – Mayoi
            yesterday












          • using the primitive root works, never mind.
            – Mayoi
            23 hours ago
















          for $i^{374}mod 331$, the full answer is $1, 4, 16, 31, 64, 83, 124, 150, 165, 203, 256, 269, 299, 323, 329$. However, if we take $31$, $64$ to generate the list, only part of the answer can be obtained (of length 3 and 5, while the full answer has 15). Could you elaborate how to deal with this case? Thanks.
          – Mayoi
          yesterday






          for $i^{374}mod 331$, the full answer is $1, 4, 16, 31, 64, 83, 124, 150, 165, 203, 256, 269, 299, 323, 329$. However, if we take $31$, $64$ to generate the list, only part of the answer can be obtained (of length 3 and 5, while the full answer has 15). Could you elaborate how to deal with this case? Thanks.
          – Mayoi
          yesterday














          using the primitive root works, never mind.
          – Mayoi
          23 hours ago




          using the primitive root works, never mind.
          – Mayoi
          23 hours ago


















           

          draft saved


          draft discarded



















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999380%2fhow-to-calculate-all-possible-values-for-m-where-m-ik-mod-p-k-p-are-fi%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          AnyDesk - Fatal Program Failure

          How to calibrate 16:9 built-in touch-screen to a 4:3 resolution?

          QoS: MAC-Priority for clients behind a repeater