A mod 2 binomial identity











up vote
2
down vote

favorite
3












I would like to show the following identity: for all $n, q geq 0$,




$$sum_k binom{2k}{4k-2n} binom{n+3q}{2k+2q+1} equiv binom{n+3q}{2q-1} pmod{2}.$$




This has been computer-tested for all $n, q leq 100$.



Remarks:




  • My convention is that the binomial coefficient $binom{m}{n}$ is nonzero only if $m geq n geq 0$.

  • If it helps, in terms of generating functions, the sum on the left hand side is $$[x^n y^{2q-1}] , frac{(1+y)^{n+3q}}{x+x^2+y^2}.$$ Of course, the right hand side is equal to $[y^{2q-1}] , (1+y)^{n+3q}$.

  • The identity is not true without modulo $2$.










share|cite|improve this question


























    up vote
    2
    down vote

    favorite
    3












    I would like to show the following identity: for all $n, q geq 0$,




    $$sum_k binom{2k}{4k-2n} binom{n+3q}{2k+2q+1} equiv binom{n+3q}{2q-1} pmod{2}.$$




    This has been computer-tested for all $n, q leq 100$.



    Remarks:




    • My convention is that the binomial coefficient $binom{m}{n}$ is nonzero only if $m geq n geq 0$.

    • If it helps, in terms of generating functions, the sum on the left hand side is $$[x^n y^{2q-1}] , frac{(1+y)^{n+3q}}{x+x^2+y^2}.$$ Of course, the right hand side is equal to $[y^{2q-1}] , (1+y)^{n+3q}$.

    • The identity is not true without modulo $2$.










    share|cite|improve this question
























      up vote
      2
      down vote

      favorite
      3









      up vote
      2
      down vote

      favorite
      3






      3





      I would like to show the following identity: for all $n, q geq 0$,




      $$sum_k binom{2k}{4k-2n} binom{n+3q}{2k+2q+1} equiv binom{n+3q}{2q-1} pmod{2}.$$




      This has been computer-tested for all $n, q leq 100$.



      Remarks:




      • My convention is that the binomial coefficient $binom{m}{n}$ is nonzero only if $m geq n geq 0$.

      • If it helps, in terms of generating functions, the sum on the left hand side is $$[x^n y^{2q-1}] , frac{(1+y)^{n+3q}}{x+x^2+y^2}.$$ Of course, the right hand side is equal to $[y^{2q-1}] , (1+y)^{n+3q}$.

      • The identity is not true without modulo $2$.










      share|cite|improve this question













      I would like to show the following identity: for all $n, q geq 0$,




      $$sum_k binom{2k}{4k-2n} binom{n+3q}{2k+2q+1} equiv binom{n+3q}{2q-1} pmod{2}.$$




      This has been computer-tested for all $n, q leq 100$.



      Remarks:




      • My convention is that the binomial coefficient $binom{m}{n}$ is nonzero only if $m geq n geq 0$.

      • If it helps, in terms of generating functions, the sum on the left hand side is $$[x^n y^{2q-1}] , frac{(1+y)^{n+3q}}{x+x^2+y^2}.$$ Of course, the right hand side is equal to $[y^{2q-1}] , (1+y)^{n+3q}$.

      • The identity is not true without modulo $2$.







      combinatorics summation modular-arithmetic binomial-coefficients






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 17 at 18:31









      JHF

      4,3211024




      4,3211024






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          3
          down vote



          accepted










          Here is a tentative proof:



          We first notice that by Kummer theorem $binom{2n}{2m} equiv binom{n}{m} bmod 2$, so that it suffices to show that $$ S_q(n) equiv T_q(n) pmod 2$$ where
          begin{align*}
          S_q(n):=&sum_k binom{k}{n-k}binom{n+3q}{2k+2q+1}\
          T_q(n):=&binom{n+3q}{2q-1}.
          end{align*}



          From here, the symbol $sim$ means has the same parity as.



          We have
          $binom{a+1}{b+1}sim binom{a}{b+1}+binom{a}{b}$ but also $binom{a+2}{b+2}sim binom{a+2}{b}+binom{a}{b}$.



          We have
          begin{align*} T_q(n+2)&sim binom{n+3q+2}{2q-1} sim binom{n+3q}{2q-1}+binom{n+3q}{2q-3}\
          &sim T_q(n) +binom{n+3+3(q-1)}{2(q-1)-1} \
          &sim T_q(n) +T_{q-1}(n+3) \
          T_q(n+3)&sim T_{q+1}(n+2)+ T_{q+1}(n)
          end{align*}

          On the other hand, we have
          begin{align*}S_q(n+3)& sim sum_k binom{k}{n+3-k}binom{n+3q+3}{2k+2q+1}\
          &sim sum_k binom{k}{n+2-(k-1)}binom{n+2+3q+1}{2k+2q+1}\
          &sim sum_k binom{k-1}{n+2-(k-1)}binom{n+2+3q+1}{2k+2q+1}\
          &+ sum_k binom{k-1}{n+1-(k-1)}binom{n+2+3q+1}{2k+2q+1}\
          &sim sum_k binom{k-1}{n+2-(k-1)}binom{n+2+3q+1}{2(k-1)+2q+3}\
          &+ sum_k binom{k-1}{n+1-(k-1)}binom{n+2+3q+1}{2k+2q+1}\
          &sim sum_k binom{k-1}{n+2-(k-1)}binom{n+2+3(q+1)-2}{2(k-1)+2(q+1)+1}\
          &+ sum_k binom{k-1}{n+1-(k-1)}binom{n+2+3q+1}{2k+2q+1}\
          & sim sum_k binom{k-1}{n+2-(k-1)}binom{n+2+3(q+1)}{2(k-1)+2(q+1)+1}\
          &+sum_kbinom{k-1}{n+2-(k-1)}binom{n+2+3(q+1)-2}{2(k-1)+2(q+1)-1}\
          &+sum_k binom{k-1}{n+1-(k-1)}binom{n+2+3q+1}{2k+2q+1}\
          &sim S_{q+1}(n+2) +sum_kbinom{k}{n+2-k}binom{n+3(q+1)}{2k+2(q+1)-1}\
          &+sum_k binom{k}{n+1-k}binom{n+3(q+1)}{2k+2(q+1)+1}\
          &sim S_{q+1}(n+2) \&+sum_kbinom{k}{n+2-k}binom{n+3(q+1)}{2(k-1)+2(q+1)+1}\
          &+sum_k binom{k}{n+1-k}binom{n+3(q+1)}{2k+2(q+1)+1}\
          &sim S_{q+1}(n+2)+sum_kbinom{k-1}{n+2-k}binom{n+3(q+1)}{2(k-1)+2(q+1)+1}\
          &+sum_kbinom{k-1}{n-(k-1)}binom{n+3(q+1)}{2(k-1)+2(q+1)+1}\
          &+sum_k binom{k}{n+1-k}binom{n+3(q+1)}{2k+2(q+1)+1}\
          &sim S_{q+1}(n+2)+ S_{q+1}(n) \&+sum_kbinom{k-1}{n+2-k}binom{n+3(q+1)}{2(k-1)+2(q+1)+1}+sum_k binom{k}{n+1-k}binom{n+3(q+1)}{2k+2(q+1)+1}\
          &sim S_{q+1}(n+2)+ S_{q+1}(n)+2sum_k binom{k}{n+1-k}binom{n+3(q+1)}{2k+2(q+1)+1}\
          &sim S_{q+1}(n+2)+ S_{q+1}(n) \&+sum_kbinom{k-1}{n+2-k}binom{n+3(q+1)}{2(k-1)+2(q+1)+1}+sum_k binom{k}{n+1-k}binom{n+3(q+1)}{2k+2(q+1)+1}\
          &sim S_{q+1}(n+2)+ S_{q+1}(n)+2sum_k binom{k}{n+1-k}binom{n+3(q+1)}{2k+2(q+1)+1}\
          S_q(n+3)&sim S_{q+1}(n+2)+ S_{q+1}(n)
          end{align*}



          So the parity of both $ S_q(n)$ and $ T_q(n)$ satisfy the same third order linear recurrence on $n$. Then in order to show that $ S_q(n) sim T_q(n)$, it suffices to show that $ S_q(0) sim T_q(0)$, $ S_q(1) sim T_q(1)$ and $ S_q(2) sim T_q(2)$.



          $S_q(0)-T_q(0)$ is clearly an even integer since
          $$S_q(0)-T_q(0)= binom{3q}{q+1}-binom{3q}{q-1}=2 binom{3q+1}{q-1}.$$



          We have $T_q(1)-S_q(1)= binom{3q+1}{q+2}-binom{3q+1}{q-2}$. After some calculation we find $$T_q(1)-S_q(1)= 2frac{5q+7}{3q+3}binom{3q+3}{q-1}$$ which is an even integer since begin{align*}binom{3q+3}{q-1}(5q+7) &equiv binom{3q+3}{q-1}(2q+4)pmod {3q+3}\
          &equiv-binom{3q+3}{q-1}(q-1)pmod {3q+3}\
          &equiv-binom{3q+2}{q-2}(3q+3)pmod {3q+3}\
          &equiv 0pmod {3q+3}end{align*}



          Also, after some calculation, it can be shown that
          begin{align*}
          T_q(2)-S_q(2) &= binom{3q+2}{q+3}-binom{3q+2}{q-1}-binom{3q+2}{q-3}\
          &= 2 binom{3q+5}{q-1} frac{54+301q+258q^2+59q^3}{(3q+5)(3q+4)(3q+3)}.
          end{align*}

          Then, to complete the proof, we need to show that
          $$ binom{3q+5}{q-1} (54+301q+258q^2+59q^3)equiv 0 pmod {(3q+5)(3q+4)(3q+3)}.$$
          We have $$ (54+301q+258q^2+59q^3) equiv (q-1)(66+47q+5q^2)pmod {(3q+5)(3q+4)(3q+3)}.$$



          Then $$ binom{3q+5}{q-1} (54+301q+258q^2+59q^3) equiv (3q+5)binom{3q+4}{q-2}(66+47q+5q^2)pmod {(3q+5)(3q+4)(3q+3)}.$$
          Then it suffices to show that
          $$ binom{3q+4}{q-2}(66+47q+5q^2)equiv 0 pmod {(3q+4)(3q+3)}.$$
          But $3q+4$ and $3q+3$ are coprime, so we need to show that
          $$ binom{3q+4}{q-2}(66+47q+5q^2)equiv 0 pmod {3q+4}$$
          and
          $$ binom{3q+4}{q-2}(66+47q+5q^2)equiv 0 pmod {3q+3}.$$
          That is
          $$ binom{3q+4}{q-2}(14-q^2)equiv 0 pmod {3q+4} tag1$$
          and
          $$ binom{3q+4}{q-2}(24-q-q^2)equiv 0 pmod {3q+3}.tag2$$



          (1) is equivalent to
          begin{align*} frac{3q+4}{q-2}binom{3q+3}{q-3}(14-q^2)&equiv 0 pmod {3q+4} \
          binom{3q+3}{q-3}(14-q^2)&equiv 0 pmod {q-2}\
          10binom{3q+3}{q-3}&equiv 0 pmod {q-2}\
          10frac{q-2}{3q+4}binom{3q+4}{q-2}&equiv 0 pmod {q-2}\
          10binom{3q+4}{q-2}&equiv 0 pmod {3q+4}.\
          end{align*}



          But the last line holds true indeed, because we know from here that
          begin{align*} binom{3q+4}{q-2}&equiv 0 pmod {frac{3q+4}{gcd(3q+4,q-2)}}\
          &equiv 0 pmod {frac{3q+4}{gcd(10,q-2)}}end{align*}



          There remains to show the validity of (2). We have



          $$ binom{3q+4}{q-2}(24-q-q^2)= (3q+3)binom{3q+4}{q-4} frac{3q+4}{(q-2)(q-3)}(24-q-q^2)$$
          so that we need to show that
          $$ binom{3q+2}{q-4}(3q+4)(24-q-q^2)equiv 0pmod {(q-2)(q-3)}. $$
          That is



          $$ binom{3q+2}{q-4}(3q+4)(24-q-q^2)equiv 0pmod {q-2} $$
          and
          $$ binom{3q+2}{q-4}(3q+4)(24-q-q^2)equiv 0pmod {q-3}. $$
          That is
          $$ 180binom{3q+2}{q-4}equiv 0pmod {q-2} $$
          and
          $$ 156 binom{3q+2}{q-4}equiv 0pmod {q-3}. $$
          That is
          $$ 180frac{(q-2)(q-3)}{(3q+4)(q-2)}binom{3q+4}{q-2}equiv 0pmod {q-2} $$
          and
          $$ 156 frac{q-3}{3q+3}binom{3q+3}{q-3}equiv 0pmod {q-3}. $$



          That is
          $$ 180(q-3)binom{3q+4}{q-2}equiv 0pmod {(3q+4)(3q+3)} $$
          and
          $$ 156binom{3q+3}{q-3}equiv 0pmod {3q+3}. $$
          That is
          $$ 180(q-3)binom{3q+4}{q-2}equiv 0pmod {3q+4} tag3$$
          and
          $$ 180(q-3)binom{3q+4}{q-2}equiv 0pmod {3q+3} tag4$$
          and
          $$ 156binom{3q+3}{q-3}equiv 0pmod {3q+3}. tag5$$



          For (5) it holds true because we have $156=13cdot 12$ a multiple of $12$ and from here, we have
          begin{align*}binom{3q+3}{q-3}&equiv 0pmod {frac{3q+3}{gcd(3q+3,q-3)}} \
          &equiv 0pmod {frac{3q+3}{gcd(12,q-3)}} end{align*}

          For (3) it holds true because we have $180=18cdot 10$ a multiple of $10$ and from here, we have
          begin{align*}binom{3q+4}{q-2}&equiv 0pmod {frac{3q+4}{gcd(3q+4,q-2)}} \
          &equiv 0pmod {frac{3q+2}{gcd(10,q-2)}} end{align*}



          We have seen that there exist an integer $K$, such that $binom{3q+3}{q-3}=Kfrac{3q+3}{gcd(12,q-3)}$. Now, with the same argument from here, we have
          begin{align*}binom{3q+3}{q-2}&equiv 0pmod {frac{3q+3}{gcd(3q+3,q-2)}} \
          &equiv 0pmod {frac{3q+3}{gcd(9,q-2)}} end{align*}

          so there exists an integer $L$ such that $binom{3q+3}{q-2}=Lfrac{3q+3}{gcd(9,q-2)}$.
          Then
          begin{align*} 180(q-3)binom{3q+4}{q-2}&=180(q-3)left(binom{3q+3}{q-2}+binom{3q+3}{q-3}right)\
          &= (3q+3)left( frac{180L(q-3)}{gcd(9,q-2)}+frac{180K(q-3)}{gcd(12,q-3)}right). end{align*}

          The second factor on the right hand side is clearly an integer and this establishes the validity of (4). The proof is finished here.






          share|cite|improve this answer























          • Great! Also, after showing the recurrence relation, the base cases can also be handled by breaking into cases of $q$ even and $q$ odd and using strong induction.
            – JHF
            Nov 21 at 15:54











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3002663%2fa-mod-2-binomial-identity%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          3
          down vote



          accepted










          Here is a tentative proof:



          We first notice that by Kummer theorem $binom{2n}{2m} equiv binom{n}{m} bmod 2$, so that it suffices to show that $$ S_q(n) equiv T_q(n) pmod 2$$ where
          begin{align*}
          S_q(n):=&sum_k binom{k}{n-k}binom{n+3q}{2k+2q+1}\
          T_q(n):=&binom{n+3q}{2q-1}.
          end{align*}



          From here, the symbol $sim$ means has the same parity as.



          We have
          $binom{a+1}{b+1}sim binom{a}{b+1}+binom{a}{b}$ but also $binom{a+2}{b+2}sim binom{a+2}{b}+binom{a}{b}$.



          We have
          begin{align*} T_q(n+2)&sim binom{n+3q+2}{2q-1} sim binom{n+3q}{2q-1}+binom{n+3q}{2q-3}\
          &sim T_q(n) +binom{n+3+3(q-1)}{2(q-1)-1} \
          &sim T_q(n) +T_{q-1}(n+3) \
          T_q(n+3)&sim T_{q+1}(n+2)+ T_{q+1}(n)
          end{align*}

          On the other hand, we have
          begin{align*}S_q(n+3)& sim sum_k binom{k}{n+3-k}binom{n+3q+3}{2k+2q+1}\
          &sim sum_k binom{k}{n+2-(k-1)}binom{n+2+3q+1}{2k+2q+1}\
          &sim sum_k binom{k-1}{n+2-(k-1)}binom{n+2+3q+1}{2k+2q+1}\
          &+ sum_k binom{k-1}{n+1-(k-1)}binom{n+2+3q+1}{2k+2q+1}\
          &sim sum_k binom{k-1}{n+2-(k-1)}binom{n+2+3q+1}{2(k-1)+2q+3}\
          &+ sum_k binom{k-1}{n+1-(k-1)}binom{n+2+3q+1}{2k+2q+1}\
          &sim sum_k binom{k-1}{n+2-(k-1)}binom{n+2+3(q+1)-2}{2(k-1)+2(q+1)+1}\
          &+ sum_k binom{k-1}{n+1-(k-1)}binom{n+2+3q+1}{2k+2q+1}\
          & sim sum_k binom{k-1}{n+2-(k-1)}binom{n+2+3(q+1)}{2(k-1)+2(q+1)+1}\
          &+sum_kbinom{k-1}{n+2-(k-1)}binom{n+2+3(q+1)-2}{2(k-1)+2(q+1)-1}\
          &+sum_k binom{k-1}{n+1-(k-1)}binom{n+2+3q+1}{2k+2q+1}\
          &sim S_{q+1}(n+2) +sum_kbinom{k}{n+2-k}binom{n+3(q+1)}{2k+2(q+1)-1}\
          &+sum_k binom{k}{n+1-k}binom{n+3(q+1)}{2k+2(q+1)+1}\
          &sim S_{q+1}(n+2) \&+sum_kbinom{k}{n+2-k}binom{n+3(q+1)}{2(k-1)+2(q+1)+1}\
          &+sum_k binom{k}{n+1-k}binom{n+3(q+1)}{2k+2(q+1)+1}\
          &sim S_{q+1}(n+2)+sum_kbinom{k-1}{n+2-k}binom{n+3(q+1)}{2(k-1)+2(q+1)+1}\
          &+sum_kbinom{k-1}{n-(k-1)}binom{n+3(q+1)}{2(k-1)+2(q+1)+1}\
          &+sum_k binom{k}{n+1-k}binom{n+3(q+1)}{2k+2(q+1)+1}\
          &sim S_{q+1}(n+2)+ S_{q+1}(n) \&+sum_kbinom{k-1}{n+2-k}binom{n+3(q+1)}{2(k-1)+2(q+1)+1}+sum_k binom{k}{n+1-k}binom{n+3(q+1)}{2k+2(q+1)+1}\
          &sim S_{q+1}(n+2)+ S_{q+1}(n)+2sum_k binom{k}{n+1-k}binom{n+3(q+1)}{2k+2(q+1)+1}\
          &sim S_{q+1}(n+2)+ S_{q+1}(n) \&+sum_kbinom{k-1}{n+2-k}binom{n+3(q+1)}{2(k-1)+2(q+1)+1}+sum_k binom{k}{n+1-k}binom{n+3(q+1)}{2k+2(q+1)+1}\
          &sim S_{q+1}(n+2)+ S_{q+1}(n)+2sum_k binom{k}{n+1-k}binom{n+3(q+1)}{2k+2(q+1)+1}\
          S_q(n+3)&sim S_{q+1}(n+2)+ S_{q+1}(n)
          end{align*}



          So the parity of both $ S_q(n)$ and $ T_q(n)$ satisfy the same third order linear recurrence on $n$. Then in order to show that $ S_q(n) sim T_q(n)$, it suffices to show that $ S_q(0) sim T_q(0)$, $ S_q(1) sim T_q(1)$ and $ S_q(2) sim T_q(2)$.



          $S_q(0)-T_q(0)$ is clearly an even integer since
          $$S_q(0)-T_q(0)= binom{3q}{q+1}-binom{3q}{q-1}=2 binom{3q+1}{q-1}.$$



          We have $T_q(1)-S_q(1)= binom{3q+1}{q+2}-binom{3q+1}{q-2}$. After some calculation we find $$T_q(1)-S_q(1)= 2frac{5q+7}{3q+3}binom{3q+3}{q-1}$$ which is an even integer since begin{align*}binom{3q+3}{q-1}(5q+7) &equiv binom{3q+3}{q-1}(2q+4)pmod {3q+3}\
          &equiv-binom{3q+3}{q-1}(q-1)pmod {3q+3}\
          &equiv-binom{3q+2}{q-2}(3q+3)pmod {3q+3}\
          &equiv 0pmod {3q+3}end{align*}



          Also, after some calculation, it can be shown that
          begin{align*}
          T_q(2)-S_q(2) &= binom{3q+2}{q+3}-binom{3q+2}{q-1}-binom{3q+2}{q-3}\
          &= 2 binom{3q+5}{q-1} frac{54+301q+258q^2+59q^3}{(3q+5)(3q+4)(3q+3)}.
          end{align*}

          Then, to complete the proof, we need to show that
          $$ binom{3q+5}{q-1} (54+301q+258q^2+59q^3)equiv 0 pmod {(3q+5)(3q+4)(3q+3)}.$$
          We have $$ (54+301q+258q^2+59q^3) equiv (q-1)(66+47q+5q^2)pmod {(3q+5)(3q+4)(3q+3)}.$$



          Then $$ binom{3q+5}{q-1} (54+301q+258q^2+59q^3) equiv (3q+5)binom{3q+4}{q-2}(66+47q+5q^2)pmod {(3q+5)(3q+4)(3q+3)}.$$
          Then it suffices to show that
          $$ binom{3q+4}{q-2}(66+47q+5q^2)equiv 0 pmod {(3q+4)(3q+3)}.$$
          But $3q+4$ and $3q+3$ are coprime, so we need to show that
          $$ binom{3q+4}{q-2}(66+47q+5q^2)equiv 0 pmod {3q+4}$$
          and
          $$ binom{3q+4}{q-2}(66+47q+5q^2)equiv 0 pmod {3q+3}.$$
          That is
          $$ binom{3q+4}{q-2}(14-q^2)equiv 0 pmod {3q+4} tag1$$
          and
          $$ binom{3q+4}{q-2}(24-q-q^2)equiv 0 pmod {3q+3}.tag2$$



          (1) is equivalent to
          begin{align*} frac{3q+4}{q-2}binom{3q+3}{q-3}(14-q^2)&equiv 0 pmod {3q+4} \
          binom{3q+3}{q-3}(14-q^2)&equiv 0 pmod {q-2}\
          10binom{3q+3}{q-3}&equiv 0 pmod {q-2}\
          10frac{q-2}{3q+4}binom{3q+4}{q-2}&equiv 0 pmod {q-2}\
          10binom{3q+4}{q-2}&equiv 0 pmod {3q+4}.\
          end{align*}



          But the last line holds true indeed, because we know from here that
          begin{align*} binom{3q+4}{q-2}&equiv 0 pmod {frac{3q+4}{gcd(3q+4,q-2)}}\
          &equiv 0 pmod {frac{3q+4}{gcd(10,q-2)}}end{align*}



          There remains to show the validity of (2). We have



          $$ binom{3q+4}{q-2}(24-q-q^2)= (3q+3)binom{3q+4}{q-4} frac{3q+4}{(q-2)(q-3)}(24-q-q^2)$$
          so that we need to show that
          $$ binom{3q+2}{q-4}(3q+4)(24-q-q^2)equiv 0pmod {(q-2)(q-3)}. $$
          That is



          $$ binom{3q+2}{q-4}(3q+4)(24-q-q^2)equiv 0pmod {q-2} $$
          and
          $$ binom{3q+2}{q-4}(3q+4)(24-q-q^2)equiv 0pmod {q-3}. $$
          That is
          $$ 180binom{3q+2}{q-4}equiv 0pmod {q-2} $$
          and
          $$ 156 binom{3q+2}{q-4}equiv 0pmod {q-3}. $$
          That is
          $$ 180frac{(q-2)(q-3)}{(3q+4)(q-2)}binom{3q+4}{q-2}equiv 0pmod {q-2} $$
          and
          $$ 156 frac{q-3}{3q+3}binom{3q+3}{q-3}equiv 0pmod {q-3}. $$



          That is
          $$ 180(q-3)binom{3q+4}{q-2}equiv 0pmod {(3q+4)(3q+3)} $$
          and
          $$ 156binom{3q+3}{q-3}equiv 0pmod {3q+3}. $$
          That is
          $$ 180(q-3)binom{3q+4}{q-2}equiv 0pmod {3q+4} tag3$$
          and
          $$ 180(q-3)binom{3q+4}{q-2}equiv 0pmod {3q+3} tag4$$
          and
          $$ 156binom{3q+3}{q-3}equiv 0pmod {3q+3}. tag5$$



          For (5) it holds true because we have $156=13cdot 12$ a multiple of $12$ and from here, we have
          begin{align*}binom{3q+3}{q-3}&equiv 0pmod {frac{3q+3}{gcd(3q+3,q-3)}} \
          &equiv 0pmod {frac{3q+3}{gcd(12,q-3)}} end{align*}

          For (3) it holds true because we have $180=18cdot 10$ a multiple of $10$ and from here, we have
          begin{align*}binom{3q+4}{q-2}&equiv 0pmod {frac{3q+4}{gcd(3q+4,q-2)}} \
          &equiv 0pmod {frac{3q+2}{gcd(10,q-2)}} end{align*}



          We have seen that there exist an integer $K$, such that $binom{3q+3}{q-3}=Kfrac{3q+3}{gcd(12,q-3)}$. Now, with the same argument from here, we have
          begin{align*}binom{3q+3}{q-2}&equiv 0pmod {frac{3q+3}{gcd(3q+3,q-2)}} \
          &equiv 0pmod {frac{3q+3}{gcd(9,q-2)}} end{align*}

          so there exists an integer $L$ such that $binom{3q+3}{q-2}=Lfrac{3q+3}{gcd(9,q-2)}$.
          Then
          begin{align*} 180(q-3)binom{3q+4}{q-2}&=180(q-3)left(binom{3q+3}{q-2}+binom{3q+3}{q-3}right)\
          &= (3q+3)left( frac{180L(q-3)}{gcd(9,q-2)}+frac{180K(q-3)}{gcd(12,q-3)}right). end{align*}

          The second factor on the right hand side is clearly an integer and this establishes the validity of (4). The proof is finished here.






          share|cite|improve this answer























          • Great! Also, after showing the recurrence relation, the base cases can also be handled by breaking into cases of $q$ even and $q$ odd and using strong induction.
            – JHF
            Nov 21 at 15:54















          up vote
          3
          down vote



          accepted










          Here is a tentative proof:



          We first notice that by Kummer theorem $binom{2n}{2m} equiv binom{n}{m} bmod 2$, so that it suffices to show that $$ S_q(n) equiv T_q(n) pmod 2$$ where
          begin{align*}
          S_q(n):=&sum_k binom{k}{n-k}binom{n+3q}{2k+2q+1}\
          T_q(n):=&binom{n+3q}{2q-1}.
          end{align*}



          From here, the symbol $sim$ means has the same parity as.



          We have
          $binom{a+1}{b+1}sim binom{a}{b+1}+binom{a}{b}$ but also $binom{a+2}{b+2}sim binom{a+2}{b}+binom{a}{b}$.



          We have
          begin{align*} T_q(n+2)&sim binom{n+3q+2}{2q-1} sim binom{n+3q}{2q-1}+binom{n+3q}{2q-3}\
          &sim T_q(n) +binom{n+3+3(q-1)}{2(q-1)-1} \
          &sim T_q(n) +T_{q-1}(n+3) \
          T_q(n+3)&sim T_{q+1}(n+2)+ T_{q+1}(n)
          end{align*}

          On the other hand, we have
          begin{align*}S_q(n+3)& sim sum_k binom{k}{n+3-k}binom{n+3q+3}{2k+2q+1}\
          &sim sum_k binom{k}{n+2-(k-1)}binom{n+2+3q+1}{2k+2q+1}\
          &sim sum_k binom{k-1}{n+2-(k-1)}binom{n+2+3q+1}{2k+2q+1}\
          &+ sum_k binom{k-1}{n+1-(k-1)}binom{n+2+3q+1}{2k+2q+1}\
          &sim sum_k binom{k-1}{n+2-(k-1)}binom{n+2+3q+1}{2(k-1)+2q+3}\
          &+ sum_k binom{k-1}{n+1-(k-1)}binom{n+2+3q+1}{2k+2q+1}\
          &sim sum_k binom{k-1}{n+2-(k-1)}binom{n+2+3(q+1)-2}{2(k-1)+2(q+1)+1}\
          &+ sum_k binom{k-1}{n+1-(k-1)}binom{n+2+3q+1}{2k+2q+1}\
          & sim sum_k binom{k-1}{n+2-(k-1)}binom{n+2+3(q+1)}{2(k-1)+2(q+1)+1}\
          &+sum_kbinom{k-1}{n+2-(k-1)}binom{n+2+3(q+1)-2}{2(k-1)+2(q+1)-1}\
          &+sum_k binom{k-1}{n+1-(k-1)}binom{n+2+3q+1}{2k+2q+1}\
          &sim S_{q+1}(n+2) +sum_kbinom{k}{n+2-k}binom{n+3(q+1)}{2k+2(q+1)-1}\
          &+sum_k binom{k}{n+1-k}binom{n+3(q+1)}{2k+2(q+1)+1}\
          &sim S_{q+1}(n+2) \&+sum_kbinom{k}{n+2-k}binom{n+3(q+1)}{2(k-1)+2(q+1)+1}\
          &+sum_k binom{k}{n+1-k}binom{n+3(q+1)}{2k+2(q+1)+1}\
          &sim S_{q+1}(n+2)+sum_kbinom{k-1}{n+2-k}binom{n+3(q+1)}{2(k-1)+2(q+1)+1}\
          &+sum_kbinom{k-1}{n-(k-1)}binom{n+3(q+1)}{2(k-1)+2(q+1)+1}\
          &+sum_k binom{k}{n+1-k}binom{n+3(q+1)}{2k+2(q+1)+1}\
          &sim S_{q+1}(n+2)+ S_{q+1}(n) \&+sum_kbinom{k-1}{n+2-k}binom{n+3(q+1)}{2(k-1)+2(q+1)+1}+sum_k binom{k}{n+1-k}binom{n+3(q+1)}{2k+2(q+1)+1}\
          &sim S_{q+1}(n+2)+ S_{q+1}(n)+2sum_k binom{k}{n+1-k}binom{n+3(q+1)}{2k+2(q+1)+1}\
          &sim S_{q+1}(n+2)+ S_{q+1}(n) \&+sum_kbinom{k-1}{n+2-k}binom{n+3(q+1)}{2(k-1)+2(q+1)+1}+sum_k binom{k}{n+1-k}binom{n+3(q+1)}{2k+2(q+1)+1}\
          &sim S_{q+1}(n+2)+ S_{q+1}(n)+2sum_k binom{k}{n+1-k}binom{n+3(q+1)}{2k+2(q+1)+1}\
          S_q(n+3)&sim S_{q+1}(n+2)+ S_{q+1}(n)
          end{align*}



          So the parity of both $ S_q(n)$ and $ T_q(n)$ satisfy the same third order linear recurrence on $n$. Then in order to show that $ S_q(n) sim T_q(n)$, it suffices to show that $ S_q(0) sim T_q(0)$, $ S_q(1) sim T_q(1)$ and $ S_q(2) sim T_q(2)$.



          $S_q(0)-T_q(0)$ is clearly an even integer since
          $$S_q(0)-T_q(0)= binom{3q}{q+1}-binom{3q}{q-1}=2 binom{3q+1}{q-1}.$$



          We have $T_q(1)-S_q(1)= binom{3q+1}{q+2}-binom{3q+1}{q-2}$. After some calculation we find $$T_q(1)-S_q(1)= 2frac{5q+7}{3q+3}binom{3q+3}{q-1}$$ which is an even integer since begin{align*}binom{3q+3}{q-1}(5q+7) &equiv binom{3q+3}{q-1}(2q+4)pmod {3q+3}\
          &equiv-binom{3q+3}{q-1}(q-1)pmod {3q+3}\
          &equiv-binom{3q+2}{q-2}(3q+3)pmod {3q+3}\
          &equiv 0pmod {3q+3}end{align*}



          Also, after some calculation, it can be shown that
          begin{align*}
          T_q(2)-S_q(2) &= binom{3q+2}{q+3}-binom{3q+2}{q-1}-binom{3q+2}{q-3}\
          &= 2 binom{3q+5}{q-1} frac{54+301q+258q^2+59q^3}{(3q+5)(3q+4)(3q+3)}.
          end{align*}

          Then, to complete the proof, we need to show that
          $$ binom{3q+5}{q-1} (54+301q+258q^2+59q^3)equiv 0 pmod {(3q+5)(3q+4)(3q+3)}.$$
          We have $$ (54+301q+258q^2+59q^3) equiv (q-1)(66+47q+5q^2)pmod {(3q+5)(3q+4)(3q+3)}.$$



          Then $$ binom{3q+5}{q-1} (54+301q+258q^2+59q^3) equiv (3q+5)binom{3q+4}{q-2}(66+47q+5q^2)pmod {(3q+5)(3q+4)(3q+3)}.$$
          Then it suffices to show that
          $$ binom{3q+4}{q-2}(66+47q+5q^2)equiv 0 pmod {(3q+4)(3q+3)}.$$
          But $3q+4$ and $3q+3$ are coprime, so we need to show that
          $$ binom{3q+4}{q-2}(66+47q+5q^2)equiv 0 pmod {3q+4}$$
          and
          $$ binom{3q+4}{q-2}(66+47q+5q^2)equiv 0 pmod {3q+3}.$$
          That is
          $$ binom{3q+4}{q-2}(14-q^2)equiv 0 pmod {3q+4} tag1$$
          and
          $$ binom{3q+4}{q-2}(24-q-q^2)equiv 0 pmod {3q+3}.tag2$$



          (1) is equivalent to
          begin{align*} frac{3q+4}{q-2}binom{3q+3}{q-3}(14-q^2)&equiv 0 pmod {3q+4} \
          binom{3q+3}{q-3}(14-q^2)&equiv 0 pmod {q-2}\
          10binom{3q+3}{q-3}&equiv 0 pmod {q-2}\
          10frac{q-2}{3q+4}binom{3q+4}{q-2}&equiv 0 pmod {q-2}\
          10binom{3q+4}{q-2}&equiv 0 pmod {3q+4}.\
          end{align*}



          But the last line holds true indeed, because we know from here that
          begin{align*} binom{3q+4}{q-2}&equiv 0 pmod {frac{3q+4}{gcd(3q+4,q-2)}}\
          &equiv 0 pmod {frac{3q+4}{gcd(10,q-2)}}end{align*}



          There remains to show the validity of (2). We have



          $$ binom{3q+4}{q-2}(24-q-q^2)= (3q+3)binom{3q+4}{q-4} frac{3q+4}{(q-2)(q-3)}(24-q-q^2)$$
          so that we need to show that
          $$ binom{3q+2}{q-4}(3q+4)(24-q-q^2)equiv 0pmod {(q-2)(q-3)}. $$
          That is



          $$ binom{3q+2}{q-4}(3q+4)(24-q-q^2)equiv 0pmod {q-2} $$
          and
          $$ binom{3q+2}{q-4}(3q+4)(24-q-q^2)equiv 0pmod {q-3}. $$
          That is
          $$ 180binom{3q+2}{q-4}equiv 0pmod {q-2} $$
          and
          $$ 156 binom{3q+2}{q-4}equiv 0pmod {q-3}. $$
          That is
          $$ 180frac{(q-2)(q-3)}{(3q+4)(q-2)}binom{3q+4}{q-2}equiv 0pmod {q-2} $$
          and
          $$ 156 frac{q-3}{3q+3}binom{3q+3}{q-3}equiv 0pmod {q-3}. $$



          That is
          $$ 180(q-3)binom{3q+4}{q-2}equiv 0pmod {(3q+4)(3q+3)} $$
          and
          $$ 156binom{3q+3}{q-3}equiv 0pmod {3q+3}. $$
          That is
          $$ 180(q-3)binom{3q+4}{q-2}equiv 0pmod {3q+4} tag3$$
          and
          $$ 180(q-3)binom{3q+4}{q-2}equiv 0pmod {3q+3} tag4$$
          and
          $$ 156binom{3q+3}{q-3}equiv 0pmod {3q+3}. tag5$$



          For (5) it holds true because we have $156=13cdot 12$ a multiple of $12$ and from here, we have
          begin{align*}binom{3q+3}{q-3}&equiv 0pmod {frac{3q+3}{gcd(3q+3,q-3)}} \
          &equiv 0pmod {frac{3q+3}{gcd(12,q-3)}} end{align*}

          For (3) it holds true because we have $180=18cdot 10$ a multiple of $10$ and from here, we have
          begin{align*}binom{3q+4}{q-2}&equiv 0pmod {frac{3q+4}{gcd(3q+4,q-2)}} \
          &equiv 0pmod {frac{3q+2}{gcd(10,q-2)}} end{align*}



          We have seen that there exist an integer $K$, such that $binom{3q+3}{q-3}=Kfrac{3q+3}{gcd(12,q-3)}$. Now, with the same argument from here, we have
          begin{align*}binom{3q+3}{q-2}&equiv 0pmod {frac{3q+3}{gcd(3q+3,q-2)}} \
          &equiv 0pmod {frac{3q+3}{gcd(9,q-2)}} end{align*}

          so there exists an integer $L$ such that $binom{3q+3}{q-2}=Lfrac{3q+3}{gcd(9,q-2)}$.
          Then
          begin{align*} 180(q-3)binom{3q+4}{q-2}&=180(q-3)left(binom{3q+3}{q-2}+binom{3q+3}{q-3}right)\
          &= (3q+3)left( frac{180L(q-3)}{gcd(9,q-2)}+frac{180K(q-3)}{gcd(12,q-3)}right). end{align*}

          The second factor on the right hand side is clearly an integer and this establishes the validity of (4). The proof is finished here.






          share|cite|improve this answer























          • Great! Also, after showing the recurrence relation, the base cases can also be handled by breaking into cases of $q$ even and $q$ odd and using strong induction.
            – JHF
            Nov 21 at 15:54













          up vote
          3
          down vote



          accepted







          up vote
          3
          down vote



          accepted






          Here is a tentative proof:



          We first notice that by Kummer theorem $binom{2n}{2m} equiv binom{n}{m} bmod 2$, so that it suffices to show that $$ S_q(n) equiv T_q(n) pmod 2$$ where
          begin{align*}
          S_q(n):=&sum_k binom{k}{n-k}binom{n+3q}{2k+2q+1}\
          T_q(n):=&binom{n+3q}{2q-1}.
          end{align*}



          From here, the symbol $sim$ means has the same parity as.



          We have
          $binom{a+1}{b+1}sim binom{a}{b+1}+binom{a}{b}$ but also $binom{a+2}{b+2}sim binom{a+2}{b}+binom{a}{b}$.



          We have
          begin{align*} T_q(n+2)&sim binom{n+3q+2}{2q-1} sim binom{n+3q}{2q-1}+binom{n+3q}{2q-3}\
          &sim T_q(n) +binom{n+3+3(q-1)}{2(q-1)-1} \
          &sim T_q(n) +T_{q-1}(n+3) \
          T_q(n+3)&sim T_{q+1}(n+2)+ T_{q+1}(n)
          end{align*}

          On the other hand, we have
          begin{align*}S_q(n+3)& sim sum_k binom{k}{n+3-k}binom{n+3q+3}{2k+2q+1}\
          &sim sum_k binom{k}{n+2-(k-1)}binom{n+2+3q+1}{2k+2q+1}\
          &sim sum_k binom{k-1}{n+2-(k-1)}binom{n+2+3q+1}{2k+2q+1}\
          &+ sum_k binom{k-1}{n+1-(k-1)}binom{n+2+3q+1}{2k+2q+1}\
          &sim sum_k binom{k-1}{n+2-(k-1)}binom{n+2+3q+1}{2(k-1)+2q+3}\
          &+ sum_k binom{k-1}{n+1-(k-1)}binom{n+2+3q+1}{2k+2q+1}\
          &sim sum_k binom{k-1}{n+2-(k-1)}binom{n+2+3(q+1)-2}{2(k-1)+2(q+1)+1}\
          &+ sum_k binom{k-1}{n+1-(k-1)}binom{n+2+3q+1}{2k+2q+1}\
          & sim sum_k binom{k-1}{n+2-(k-1)}binom{n+2+3(q+1)}{2(k-1)+2(q+1)+1}\
          &+sum_kbinom{k-1}{n+2-(k-1)}binom{n+2+3(q+1)-2}{2(k-1)+2(q+1)-1}\
          &+sum_k binom{k-1}{n+1-(k-1)}binom{n+2+3q+1}{2k+2q+1}\
          &sim S_{q+1}(n+2) +sum_kbinom{k}{n+2-k}binom{n+3(q+1)}{2k+2(q+1)-1}\
          &+sum_k binom{k}{n+1-k}binom{n+3(q+1)}{2k+2(q+1)+1}\
          &sim S_{q+1}(n+2) \&+sum_kbinom{k}{n+2-k}binom{n+3(q+1)}{2(k-1)+2(q+1)+1}\
          &+sum_k binom{k}{n+1-k}binom{n+3(q+1)}{2k+2(q+1)+1}\
          &sim S_{q+1}(n+2)+sum_kbinom{k-1}{n+2-k}binom{n+3(q+1)}{2(k-1)+2(q+1)+1}\
          &+sum_kbinom{k-1}{n-(k-1)}binom{n+3(q+1)}{2(k-1)+2(q+1)+1}\
          &+sum_k binom{k}{n+1-k}binom{n+3(q+1)}{2k+2(q+1)+1}\
          &sim S_{q+1}(n+2)+ S_{q+1}(n) \&+sum_kbinom{k-1}{n+2-k}binom{n+3(q+1)}{2(k-1)+2(q+1)+1}+sum_k binom{k}{n+1-k}binom{n+3(q+1)}{2k+2(q+1)+1}\
          &sim S_{q+1}(n+2)+ S_{q+1}(n)+2sum_k binom{k}{n+1-k}binom{n+3(q+1)}{2k+2(q+1)+1}\
          &sim S_{q+1}(n+2)+ S_{q+1}(n) \&+sum_kbinom{k-1}{n+2-k}binom{n+3(q+1)}{2(k-1)+2(q+1)+1}+sum_k binom{k}{n+1-k}binom{n+3(q+1)}{2k+2(q+1)+1}\
          &sim S_{q+1}(n+2)+ S_{q+1}(n)+2sum_k binom{k}{n+1-k}binom{n+3(q+1)}{2k+2(q+1)+1}\
          S_q(n+3)&sim S_{q+1}(n+2)+ S_{q+1}(n)
          end{align*}



          So the parity of both $ S_q(n)$ and $ T_q(n)$ satisfy the same third order linear recurrence on $n$. Then in order to show that $ S_q(n) sim T_q(n)$, it suffices to show that $ S_q(0) sim T_q(0)$, $ S_q(1) sim T_q(1)$ and $ S_q(2) sim T_q(2)$.



          $S_q(0)-T_q(0)$ is clearly an even integer since
          $$S_q(0)-T_q(0)= binom{3q}{q+1}-binom{3q}{q-1}=2 binom{3q+1}{q-1}.$$



          We have $T_q(1)-S_q(1)= binom{3q+1}{q+2}-binom{3q+1}{q-2}$. After some calculation we find $$T_q(1)-S_q(1)= 2frac{5q+7}{3q+3}binom{3q+3}{q-1}$$ which is an even integer since begin{align*}binom{3q+3}{q-1}(5q+7) &equiv binom{3q+3}{q-1}(2q+4)pmod {3q+3}\
          &equiv-binom{3q+3}{q-1}(q-1)pmod {3q+3}\
          &equiv-binom{3q+2}{q-2}(3q+3)pmod {3q+3}\
          &equiv 0pmod {3q+3}end{align*}



          Also, after some calculation, it can be shown that
          begin{align*}
          T_q(2)-S_q(2) &= binom{3q+2}{q+3}-binom{3q+2}{q-1}-binom{3q+2}{q-3}\
          &= 2 binom{3q+5}{q-1} frac{54+301q+258q^2+59q^3}{(3q+5)(3q+4)(3q+3)}.
          end{align*}

          Then, to complete the proof, we need to show that
          $$ binom{3q+5}{q-1} (54+301q+258q^2+59q^3)equiv 0 pmod {(3q+5)(3q+4)(3q+3)}.$$
          We have $$ (54+301q+258q^2+59q^3) equiv (q-1)(66+47q+5q^2)pmod {(3q+5)(3q+4)(3q+3)}.$$



          Then $$ binom{3q+5}{q-1} (54+301q+258q^2+59q^3) equiv (3q+5)binom{3q+4}{q-2}(66+47q+5q^2)pmod {(3q+5)(3q+4)(3q+3)}.$$
          Then it suffices to show that
          $$ binom{3q+4}{q-2}(66+47q+5q^2)equiv 0 pmod {(3q+4)(3q+3)}.$$
          But $3q+4$ and $3q+3$ are coprime, so we need to show that
          $$ binom{3q+4}{q-2}(66+47q+5q^2)equiv 0 pmod {3q+4}$$
          and
          $$ binom{3q+4}{q-2}(66+47q+5q^2)equiv 0 pmod {3q+3}.$$
          That is
          $$ binom{3q+4}{q-2}(14-q^2)equiv 0 pmod {3q+4} tag1$$
          and
          $$ binom{3q+4}{q-2}(24-q-q^2)equiv 0 pmod {3q+3}.tag2$$



          (1) is equivalent to
          begin{align*} frac{3q+4}{q-2}binom{3q+3}{q-3}(14-q^2)&equiv 0 pmod {3q+4} \
          binom{3q+3}{q-3}(14-q^2)&equiv 0 pmod {q-2}\
          10binom{3q+3}{q-3}&equiv 0 pmod {q-2}\
          10frac{q-2}{3q+4}binom{3q+4}{q-2}&equiv 0 pmod {q-2}\
          10binom{3q+4}{q-2}&equiv 0 pmod {3q+4}.\
          end{align*}



          But the last line holds true indeed, because we know from here that
          begin{align*} binom{3q+4}{q-2}&equiv 0 pmod {frac{3q+4}{gcd(3q+4,q-2)}}\
          &equiv 0 pmod {frac{3q+4}{gcd(10,q-2)}}end{align*}



          There remains to show the validity of (2). We have



          $$ binom{3q+4}{q-2}(24-q-q^2)= (3q+3)binom{3q+4}{q-4} frac{3q+4}{(q-2)(q-3)}(24-q-q^2)$$
          so that we need to show that
          $$ binom{3q+2}{q-4}(3q+4)(24-q-q^2)equiv 0pmod {(q-2)(q-3)}. $$
          That is



          $$ binom{3q+2}{q-4}(3q+4)(24-q-q^2)equiv 0pmod {q-2} $$
          and
          $$ binom{3q+2}{q-4}(3q+4)(24-q-q^2)equiv 0pmod {q-3}. $$
          That is
          $$ 180binom{3q+2}{q-4}equiv 0pmod {q-2} $$
          and
          $$ 156 binom{3q+2}{q-4}equiv 0pmod {q-3}. $$
          That is
          $$ 180frac{(q-2)(q-3)}{(3q+4)(q-2)}binom{3q+4}{q-2}equiv 0pmod {q-2} $$
          and
          $$ 156 frac{q-3}{3q+3}binom{3q+3}{q-3}equiv 0pmod {q-3}. $$



          That is
          $$ 180(q-3)binom{3q+4}{q-2}equiv 0pmod {(3q+4)(3q+3)} $$
          and
          $$ 156binom{3q+3}{q-3}equiv 0pmod {3q+3}. $$
          That is
          $$ 180(q-3)binom{3q+4}{q-2}equiv 0pmod {3q+4} tag3$$
          and
          $$ 180(q-3)binom{3q+4}{q-2}equiv 0pmod {3q+3} tag4$$
          and
          $$ 156binom{3q+3}{q-3}equiv 0pmod {3q+3}. tag5$$



          For (5) it holds true because we have $156=13cdot 12$ a multiple of $12$ and from here, we have
          begin{align*}binom{3q+3}{q-3}&equiv 0pmod {frac{3q+3}{gcd(3q+3,q-3)}} \
          &equiv 0pmod {frac{3q+3}{gcd(12,q-3)}} end{align*}

          For (3) it holds true because we have $180=18cdot 10$ a multiple of $10$ and from here, we have
          begin{align*}binom{3q+4}{q-2}&equiv 0pmod {frac{3q+4}{gcd(3q+4,q-2)}} \
          &equiv 0pmod {frac{3q+2}{gcd(10,q-2)}} end{align*}



          We have seen that there exist an integer $K$, such that $binom{3q+3}{q-3}=Kfrac{3q+3}{gcd(12,q-3)}$. Now, with the same argument from here, we have
          begin{align*}binom{3q+3}{q-2}&equiv 0pmod {frac{3q+3}{gcd(3q+3,q-2)}} \
          &equiv 0pmod {frac{3q+3}{gcd(9,q-2)}} end{align*}

          so there exists an integer $L$ such that $binom{3q+3}{q-2}=Lfrac{3q+3}{gcd(9,q-2)}$.
          Then
          begin{align*} 180(q-3)binom{3q+4}{q-2}&=180(q-3)left(binom{3q+3}{q-2}+binom{3q+3}{q-3}right)\
          &= (3q+3)left( frac{180L(q-3)}{gcd(9,q-2)}+frac{180K(q-3)}{gcd(12,q-3)}right). end{align*}

          The second factor on the right hand side is clearly an integer and this establishes the validity of (4). The proof is finished here.






          share|cite|improve this answer














          Here is a tentative proof:



          We first notice that by Kummer theorem $binom{2n}{2m} equiv binom{n}{m} bmod 2$, so that it suffices to show that $$ S_q(n) equiv T_q(n) pmod 2$$ where
          begin{align*}
          S_q(n):=&sum_k binom{k}{n-k}binom{n+3q}{2k+2q+1}\
          T_q(n):=&binom{n+3q}{2q-1}.
          end{align*}



          From here, the symbol $sim$ means has the same parity as.



          We have
          $binom{a+1}{b+1}sim binom{a}{b+1}+binom{a}{b}$ but also $binom{a+2}{b+2}sim binom{a+2}{b}+binom{a}{b}$.



          We have
          begin{align*} T_q(n+2)&sim binom{n+3q+2}{2q-1} sim binom{n+3q}{2q-1}+binom{n+3q}{2q-3}\
          &sim T_q(n) +binom{n+3+3(q-1)}{2(q-1)-1} \
          &sim T_q(n) +T_{q-1}(n+3) \
          T_q(n+3)&sim T_{q+1}(n+2)+ T_{q+1}(n)
          end{align*}

          On the other hand, we have
          begin{align*}S_q(n+3)& sim sum_k binom{k}{n+3-k}binom{n+3q+3}{2k+2q+1}\
          &sim sum_k binom{k}{n+2-(k-1)}binom{n+2+3q+1}{2k+2q+1}\
          &sim sum_k binom{k-1}{n+2-(k-1)}binom{n+2+3q+1}{2k+2q+1}\
          &+ sum_k binom{k-1}{n+1-(k-1)}binom{n+2+3q+1}{2k+2q+1}\
          &sim sum_k binom{k-1}{n+2-(k-1)}binom{n+2+3q+1}{2(k-1)+2q+3}\
          &+ sum_k binom{k-1}{n+1-(k-1)}binom{n+2+3q+1}{2k+2q+1}\
          &sim sum_k binom{k-1}{n+2-(k-1)}binom{n+2+3(q+1)-2}{2(k-1)+2(q+1)+1}\
          &+ sum_k binom{k-1}{n+1-(k-1)}binom{n+2+3q+1}{2k+2q+1}\
          & sim sum_k binom{k-1}{n+2-(k-1)}binom{n+2+3(q+1)}{2(k-1)+2(q+1)+1}\
          &+sum_kbinom{k-1}{n+2-(k-1)}binom{n+2+3(q+1)-2}{2(k-1)+2(q+1)-1}\
          &+sum_k binom{k-1}{n+1-(k-1)}binom{n+2+3q+1}{2k+2q+1}\
          &sim S_{q+1}(n+2) +sum_kbinom{k}{n+2-k}binom{n+3(q+1)}{2k+2(q+1)-1}\
          &+sum_k binom{k}{n+1-k}binom{n+3(q+1)}{2k+2(q+1)+1}\
          &sim S_{q+1}(n+2) \&+sum_kbinom{k}{n+2-k}binom{n+3(q+1)}{2(k-1)+2(q+1)+1}\
          &+sum_k binom{k}{n+1-k}binom{n+3(q+1)}{2k+2(q+1)+1}\
          &sim S_{q+1}(n+2)+sum_kbinom{k-1}{n+2-k}binom{n+3(q+1)}{2(k-1)+2(q+1)+1}\
          &+sum_kbinom{k-1}{n-(k-1)}binom{n+3(q+1)}{2(k-1)+2(q+1)+1}\
          &+sum_k binom{k}{n+1-k}binom{n+3(q+1)}{2k+2(q+1)+1}\
          &sim S_{q+1}(n+2)+ S_{q+1}(n) \&+sum_kbinom{k-1}{n+2-k}binom{n+3(q+1)}{2(k-1)+2(q+1)+1}+sum_k binom{k}{n+1-k}binom{n+3(q+1)}{2k+2(q+1)+1}\
          &sim S_{q+1}(n+2)+ S_{q+1}(n)+2sum_k binom{k}{n+1-k}binom{n+3(q+1)}{2k+2(q+1)+1}\
          &sim S_{q+1}(n+2)+ S_{q+1}(n) \&+sum_kbinom{k-1}{n+2-k}binom{n+3(q+1)}{2(k-1)+2(q+1)+1}+sum_k binom{k}{n+1-k}binom{n+3(q+1)}{2k+2(q+1)+1}\
          &sim S_{q+1}(n+2)+ S_{q+1}(n)+2sum_k binom{k}{n+1-k}binom{n+3(q+1)}{2k+2(q+1)+1}\
          S_q(n+3)&sim S_{q+1}(n+2)+ S_{q+1}(n)
          end{align*}



          So the parity of both $ S_q(n)$ and $ T_q(n)$ satisfy the same third order linear recurrence on $n$. Then in order to show that $ S_q(n) sim T_q(n)$, it suffices to show that $ S_q(0) sim T_q(0)$, $ S_q(1) sim T_q(1)$ and $ S_q(2) sim T_q(2)$.



          $S_q(0)-T_q(0)$ is clearly an even integer since
          $$S_q(0)-T_q(0)= binom{3q}{q+1}-binom{3q}{q-1}=2 binom{3q+1}{q-1}.$$



          We have $T_q(1)-S_q(1)= binom{3q+1}{q+2}-binom{3q+1}{q-2}$. After some calculation we find $$T_q(1)-S_q(1)= 2frac{5q+7}{3q+3}binom{3q+3}{q-1}$$ which is an even integer since begin{align*}binom{3q+3}{q-1}(5q+7) &equiv binom{3q+3}{q-1}(2q+4)pmod {3q+3}\
          &equiv-binom{3q+3}{q-1}(q-1)pmod {3q+3}\
          &equiv-binom{3q+2}{q-2}(3q+3)pmod {3q+3}\
          &equiv 0pmod {3q+3}end{align*}



          Also, after some calculation, it can be shown that
          begin{align*}
          T_q(2)-S_q(2) &= binom{3q+2}{q+3}-binom{3q+2}{q-1}-binom{3q+2}{q-3}\
          &= 2 binom{3q+5}{q-1} frac{54+301q+258q^2+59q^3}{(3q+5)(3q+4)(3q+3)}.
          end{align*}

          Then, to complete the proof, we need to show that
          $$ binom{3q+5}{q-1} (54+301q+258q^2+59q^3)equiv 0 pmod {(3q+5)(3q+4)(3q+3)}.$$
          We have $$ (54+301q+258q^2+59q^3) equiv (q-1)(66+47q+5q^2)pmod {(3q+5)(3q+4)(3q+3)}.$$



          Then $$ binom{3q+5}{q-1} (54+301q+258q^2+59q^3) equiv (3q+5)binom{3q+4}{q-2}(66+47q+5q^2)pmod {(3q+5)(3q+4)(3q+3)}.$$
          Then it suffices to show that
          $$ binom{3q+4}{q-2}(66+47q+5q^2)equiv 0 pmod {(3q+4)(3q+3)}.$$
          But $3q+4$ and $3q+3$ are coprime, so we need to show that
          $$ binom{3q+4}{q-2}(66+47q+5q^2)equiv 0 pmod {3q+4}$$
          and
          $$ binom{3q+4}{q-2}(66+47q+5q^2)equiv 0 pmod {3q+3}.$$
          That is
          $$ binom{3q+4}{q-2}(14-q^2)equiv 0 pmod {3q+4} tag1$$
          and
          $$ binom{3q+4}{q-2}(24-q-q^2)equiv 0 pmod {3q+3}.tag2$$



          (1) is equivalent to
          begin{align*} frac{3q+4}{q-2}binom{3q+3}{q-3}(14-q^2)&equiv 0 pmod {3q+4} \
          binom{3q+3}{q-3}(14-q^2)&equiv 0 pmod {q-2}\
          10binom{3q+3}{q-3}&equiv 0 pmod {q-2}\
          10frac{q-2}{3q+4}binom{3q+4}{q-2}&equiv 0 pmod {q-2}\
          10binom{3q+4}{q-2}&equiv 0 pmod {3q+4}.\
          end{align*}



          But the last line holds true indeed, because we know from here that
          begin{align*} binom{3q+4}{q-2}&equiv 0 pmod {frac{3q+4}{gcd(3q+4,q-2)}}\
          &equiv 0 pmod {frac{3q+4}{gcd(10,q-2)}}end{align*}



          There remains to show the validity of (2). We have



          $$ binom{3q+4}{q-2}(24-q-q^2)= (3q+3)binom{3q+4}{q-4} frac{3q+4}{(q-2)(q-3)}(24-q-q^2)$$
          so that we need to show that
          $$ binom{3q+2}{q-4}(3q+4)(24-q-q^2)equiv 0pmod {(q-2)(q-3)}. $$
          That is



          $$ binom{3q+2}{q-4}(3q+4)(24-q-q^2)equiv 0pmod {q-2} $$
          and
          $$ binom{3q+2}{q-4}(3q+4)(24-q-q^2)equiv 0pmod {q-3}. $$
          That is
          $$ 180binom{3q+2}{q-4}equiv 0pmod {q-2} $$
          and
          $$ 156 binom{3q+2}{q-4}equiv 0pmod {q-3}. $$
          That is
          $$ 180frac{(q-2)(q-3)}{(3q+4)(q-2)}binom{3q+4}{q-2}equiv 0pmod {q-2} $$
          and
          $$ 156 frac{q-3}{3q+3}binom{3q+3}{q-3}equiv 0pmod {q-3}. $$



          That is
          $$ 180(q-3)binom{3q+4}{q-2}equiv 0pmod {(3q+4)(3q+3)} $$
          and
          $$ 156binom{3q+3}{q-3}equiv 0pmod {3q+3}. $$
          That is
          $$ 180(q-3)binom{3q+4}{q-2}equiv 0pmod {3q+4} tag3$$
          and
          $$ 180(q-3)binom{3q+4}{q-2}equiv 0pmod {3q+3} tag4$$
          and
          $$ 156binom{3q+3}{q-3}equiv 0pmod {3q+3}. tag5$$



          For (5) it holds true because we have $156=13cdot 12$ a multiple of $12$ and from here, we have
          begin{align*}binom{3q+3}{q-3}&equiv 0pmod {frac{3q+3}{gcd(3q+3,q-3)}} \
          &equiv 0pmod {frac{3q+3}{gcd(12,q-3)}} end{align*}

          For (3) it holds true because we have $180=18cdot 10$ a multiple of $10$ and from here, we have
          begin{align*}binom{3q+4}{q-2}&equiv 0pmod {frac{3q+4}{gcd(3q+4,q-2)}} \
          &equiv 0pmod {frac{3q+2}{gcd(10,q-2)}} end{align*}



          We have seen that there exist an integer $K$, such that $binom{3q+3}{q-3}=Kfrac{3q+3}{gcd(12,q-3)}$. Now, with the same argument from here, we have
          begin{align*}binom{3q+3}{q-2}&equiv 0pmod {frac{3q+3}{gcd(3q+3,q-2)}} \
          &equiv 0pmod {frac{3q+3}{gcd(9,q-2)}} end{align*}

          so there exists an integer $L$ such that $binom{3q+3}{q-2}=Lfrac{3q+3}{gcd(9,q-2)}$.
          Then
          begin{align*} 180(q-3)binom{3q+4}{q-2}&=180(q-3)left(binom{3q+3}{q-2}+binom{3q+3}{q-3}right)\
          &= (3q+3)left( frac{180L(q-3)}{gcd(9,q-2)}+frac{180K(q-3)}{gcd(12,q-3)}right). end{align*}

          The second factor on the right hand side is clearly an integer and this establishes the validity of (4). The proof is finished here.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Nov 18 at 23:25

























          answered Nov 18 at 22:51









          René Gy

          1,081613




          1,081613












          • Great! Also, after showing the recurrence relation, the base cases can also be handled by breaking into cases of $q$ even and $q$ odd and using strong induction.
            – JHF
            Nov 21 at 15:54


















          • Great! Also, after showing the recurrence relation, the base cases can also be handled by breaking into cases of $q$ even and $q$ odd and using strong induction.
            – JHF
            Nov 21 at 15:54
















          Great! Also, after showing the recurrence relation, the base cases can also be handled by breaking into cases of $q$ even and $q$ odd and using strong induction.
          – JHF
          Nov 21 at 15:54




          Great! Also, after showing the recurrence relation, the base cases can also be handled by breaking into cases of $q$ even and $q$ odd and using strong induction.
          – JHF
          Nov 21 at 15:54


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3002663%2fa-mod-2-binomial-identity%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          AnyDesk - Fatal Program Failure

          How to calibrate 16:9 built-in touch-screen to a 4:3 resolution?

          QoS: MAC-Priority for clients behind a repeater