Evaluation of contour integration help involving exponential and cosh$z$











up vote
1
down vote

favorite
1












Let the contour $gamma$ be a positively oriented cifrcle of radius 2 centered at zero, traversed once.



Evaluate I = $int_{gamma}$ $frac{dz}{(1-e^{iz})cosh(z)}$.



This is what Ive done so far



let $z = 2e^{itheta}$ for 0 < $theta$ < 2$pi$



$dz$ = $2ie^{itheta}$$dtheta$



So I = $int_0^{2pi}$ $frac{2ie^{itheta}dtheta}{(1-e^{2ie^{itheta}}))cosh(2e^{itheta})}$.



Is this the best way to do this question and where do i go from here?



Edit Just realised I can probably incorporate cosh($z$) = ($e^z$ + $e^{-z}$)/2










share|cite|improve this question




























    up vote
    1
    down vote

    favorite
    1












    Let the contour $gamma$ be a positively oriented cifrcle of radius 2 centered at zero, traversed once.



    Evaluate I = $int_{gamma}$ $frac{dz}{(1-e^{iz})cosh(z)}$.



    This is what Ive done so far



    let $z = 2e^{itheta}$ for 0 < $theta$ < 2$pi$



    $dz$ = $2ie^{itheta}$$dtheta$



    So I = $int_0^{2pi}$ $frac{2ie^{itheta}dtheta}{(1-e^{2ie^{itheta}}))cosh(2e^{itheta})}$.



    Is this the best way to do this question and where do i go from here?



    Edit Just realised I can probably incorporate cosh($z$) = ($e^z$ + $e^{-z}$)/2










    share|cite|improve this question


























      up vote
      1
      down vote

      favorite
      1









      up vote
      1
      down vote

      favorite
      1






      1





      Let the contour $gamma$ be a positively oriented cifrcle of radius 2 centered at zero, traversed once.



      Evaluate I = $int_{gamma}$ $frac{dz}{(1-e^{iz})cosh(z)}$.



      This is what Ive done so far



      let $z = 2e^{itheta}$ for 0 < $theta$ < 2$pi$



      $dz$ = $2ie^{itheta}$$dtheta$



      So I = $int_0^{2pi}$ $frac{2ie^{itheta}dtheta}{(1-e^{2ie^{itheta}}))cosh(2e^{itheta})}$.



      Is this the best way to do this question and where do i go from here?



      Edit Just realised I can probably incorporate cosh($z$) = ($e^z$ + $e^{-z}$)/2










      share|cite|improve this question















      Let the contour $gamma$ be a positively oriented cifrcle of radius 2 centered at zero, traversed once.



      Evaluate I = $int_{gamma}$ $frac{dz}{(1-e^{iz})cosh(z)}$.



      This is what Ive done so far



      let $z = 2e^{itheta}$ for 0 < $theta$ < 2$pi$



      $dz$ = $2ie^{itheta}$$dtheta$



      So I = $int_0^{2pi}$ $frac{2ie^{itheta}dtheta}{(1-e^{2ie^{itheta}}))cosh(2e^{itheta})}$.



      Is this the best way to do this question and where do i go from here?



      Edit Just realised I can probably incorporate cosh($z$) = ($e^z$ + $e^{-z}$)/2







      contour-integration






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 18 at 7:34

























      asked Nov 18 at 5:58









      sam

      498




      498



























          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3003180%2fevaluation-of-contour-integration-help-involving-exponential-and-coshz%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3003180%2fevaluation-of-contour-integration-help-involving-exponential-and-coshz%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          AnyDesk - Fatal Program Failure

          How to calibrate 16:9 built-in touch-screen to a 4:3 resolution?

          QoS: MAC-Priority for clients behind a repeater