Definition of $binom{frac{1}{2}}{1}$?











up vote
0
down vote

favorite












How interpret the combination



$binom{frac{1}{2}}{n}$ when $n$ is a positive integer ?










share|cite|improve this question






















  • In what context does this come up?
    – Michael Burr
    Nov 16 at 21:57










  • @MichaelBurr: This comes up in the binomial theorem with fractional exponents allowed.
    – Cheerful Parsnip
    Nov 16 at 22:01















up vote
0
down vote

favorite












How interpret the combination



$binom{frac{1}{2}}{n}$ when $n$ is a positive integer ?










share|cite|improve this question






















  • In what context does this come up?
    – Michael Burr
    Nov 16 at 21:57










  • @MichaelBurr: This comes up in the binomial theorem with fractional exponents allowed.
    – Cheerful Parsnip
    Nov 16 at 22:01













up vote
0
down vote

favorite









up vote
0
down vote

favorite











How interpret the combination



$binom{frac{1}{2}}{n}$ when $n$ is a positive integer ?










share|cite|improve this question













How interpret the combination



$binom{frac{1}{2}}{n}$ when $n$ is a positive integer ?







combinatorics fractional-calculus






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Nov 16 at 21:54









Medo

614213




614213












  • In what context does this come up?
    – Michael Burr
    Nov 16 at 21:57










  • @MichaelBurr: This comes up in the binomial theorem with fractional exponents allowed.
    – Cheerful Parsnip
    Nov 16 at 22:01


















  • In what context does this come up?
    – Michael Burr
    Nov 16 at 21:57










  • @MichaelBurr: This comes up in the binomial theorem with fractional exponents allowed.
    – Cheerful Parsnip
    Nov 16 at 22:01
















In what context does this come up?
– Michael Burr
Nov 16 at 21:57




In what context does this come up?
– Michael Burr
Nov 16 at 21:57












@MichaelBurr: This comes up in the binomial theorem with fractional exponents allowed.
– Cheerful Parsnip
Nov 16 at 22:01




@MichaelBurr: This comes up in the binomial theorem with fractional exponents allowed.
– Cheerful Parsnip
Nov 16 at 22:01










3 Answers
3






active

oldest

votes

















up vote
1
down vote



accepted










The definition is
$$
binom{x}{n}=frac{x(x-1)dotsm(x-n+1)}{n!}
$$

where $x$ is any real number. In the numerator there are $n$ factors starting from $x$ and decreasing by $1$ at each step. This is zero if and only if $x$ is integer and $n>x$.



In the special case $x=1/2$, a different formula can be found. Indeed,
begin{align}
frac{1}{2}left(frac{1}{2}-1right)left(frac{1}{2}-2right)dotsmleft(frac{1}{2}-n+1right)
&=frac{(-1)^{n-1}}{2^n}bigl(1cdot3cdotdotscdot(2n-3)bigr) \
&=frac{(-1)^{n-1}}{2^n}bigl(1cdot3cdotdotscdot(2n-3)bigr)
frac{2cdot4cdotdotscdot(2n-2)}{2^{n-1}(1cdot 2cdotdotscdot(n-1))} \
&=frac{(-1)^{n-1}}{2^{2n-1}}frac{(2n-2)!}{(n-1)!}\
&=frac{(-1)^{n-1}}{2^{2n-1}}frac{(2n)!}{n!}frac{n}{2n(2n-1)}\
&=frac{(-1)^{n-1}}{2^{2n}(2n-1)}frac{(2n)!}{n!}
end{align}

and therefore
$$
binom{1/2}{n}=frac{(-1)^{n-1}}{2^{2n}(2n-1)}frac{(2n)!}{(n!)^2}
$$






share|cite|improve this answer




























    up vote
    5
    down vote













    The general definition of $binomalpha k$ for $kinBbb N$ and $alphainBbb C$ is $$binomalpha k=frac1{k!}prod_{h=0}^{k-1} (alpha-h)$$






    share|cite|improve this answer




























      up vote
      3
      down vote













      Same way as usual binomial. $binom{frac{1}{2}}{n}=frac{frac{1}{2}timesfrac{-1}{2}...times(frac{1}{2}-n+1)}{n!}$






      share|cite|improve this answer





















        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














         

        draft saved


        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3001678%2fdefinition-of-binom-frac121%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes








        up vote
        1
        down vote



        accepted










        The definition is
        $$
        binom{x}{n}=frac{x(x-1)dotsm(x-n+1)}{n!}
        $$

        where $x$ is any real number. In the numerator there are $n$ factors starting from $x$ and decreasing by $1$ at each step. This is zero if and only if $x$ is integer and $n>x$.



        In the special case $x=1/2$, a different formula can be found. Indeed,
        begin{align}
        frac{1}{2}left(frac{1}{2}-1right)left(frac{1}{2}-2right)dotsmleft(frac{1}{2}-n+1right)
        &=frac{(-1)^{n-1}}{2^n}bigl(1cdot3cdotdotscdot(2n-3)bigr) \
        &=frac{(-1)^{n-1}}{2^n}bigl(1cdot3cdotdotscdot(2n-3)bigr)
        frac{2cdot4cdotdotscdot(2n-2)}{2^{n-1}(1cdot 2cdotdotscdot(n-1))} \
        &=frac{(-1)^{n-1}}{2^{2n-1}}frac{(2n-2)!}{(n-1)!}\
        &=frac{(-1)^{n-1}}{2^{2n-1}}frac{(2n)!}{n!}frac{n}{2n(2n-1)}\
        &=frac{(-1)^{n-1}}{2^{2n}(2n-1)}frac{(2n)!}{n!}
        end{align}

        and therefore
        $$
        binom{1/2}{n}=frac{(-1)^{n-1}}{2^{2n}(2n-1)}frac{(2n)!}{(n!)^2}
        $$






        share|cite|improve this answer

























          up vote
          1
          down vote



          accepted










          The definition is
          $$
          binom{x}{n}=frac{x(x-1)dotsm(x-n+1)}{n!}
          $$

          where $x$ is any real number. In the numerator there are $n$ factors starting from $x$ and decreasing by $1$ at each step. This is zero if and only if $x$ is integer and $n>x$.



          In the special case $x=1/2$, a different formula can be found. Indeed,
          begin{align}
          frac{1}{2}left(frac{1}{2}-1right)left(frac{1}{2}-2right)dotsmleft(frac{1}{2}-n+1right)
          &=frac{(-1)^{n-1}}{2^n}bigl(1cdot3cdotdotscdot(2n-3)bigr) \
          &=frac{(-1)^{n-1}}{2^n}bigl(1cdot3cdotdotscdot(2n-3)bigr)
          frac{2cdot4cdotdotscdot(2n-2)}{2^{n-1}(1cdot 2cdotdotscdot(n-1))} \
          &=frac{(-1)^{n-1}}{2^{2n-1}}frac{(2n-2)!}{(n-1)!}\
          &=frac{(-1)^{n-1}}{2^{2n-1}}frac{(2n)!}{n!}frac{n}{2n(2n-1)}\
          &=frac{(-1)^{n-1}}{2^{2n}(2n-1)}frac{(2n)!}{n!}
          end{align}

          and therefore
          $$
          binom{1/2}{n}=frac{(-1)^{n-1}}{2^{2n}(2n-1)}frac{(2n)!}{(n!)^2}
          $$






          share|cite|improve this answer























            up vote
            1
            down vote



            accepted







            up vote
            1
            down vote



            accepted






            The definition is
            $$
            binom{x}{n}=frac{x(x-1)dotsm(x-n+1)}{n!}
            $$

            where $x$ is any real number. In the numerator there are $n$ factors starting from $x$ and decreasing by $1$ at each step. This is zero if and only if $x$ is integer and $n>x$.



            In the special case $x=1/2$, a different formula can be found. Indeed,
            begin{align}
            frac{1}{2}left(frac{1}{2}-1right)left(frac{1}{2}-2right)dotsmleft(frac{1}{2}-n+1right)
            &=frac{(-1)^{n-1}}{2^n}bigl(1cdot3cdotdotscdot(2n-3)bigr) \
            &=frac{(-1)^{n-1}}{2^n}bigl(1cdot3cdotdotscdot(2n-3)bigr)
            frac{2cdot4cdotdotscdot(2n-2)}{2^{n-1}(1cdot 2cdotdotscdot(n-1))} \
            &=frac{(-1)^{n-1}}{2^{2n-1}}frac{(2n-2)!}{(n-1)!}\
            &=frac{(-1)^{n-1}}{2^{2n-1}}frac{(2n)!}{n!}frac{n}{2n(2n-1)}\
            &=frac{(-1)^{n-1}}{2^{2n}(2n-1)}frac{(2n)!}{n!}
            end{align}

            and therefore
            $$
            binom{1/2}{n}=frac{(-1)^{n-1}}{2^{2n}(2n-1)}frac{(2n)!}{(n!)^2}
            $$






            share|cite|improve this answer












            The definition is
            $$
            binom{x}{n}=frac{x(x-1)dotsm(x-n+1)}{n!}
            $$

            where $x$ is any real number. In the numerator there are $n$ factors starting from $x$ and decreasing by $1$ at each step. This is zero if and only if $x$ is integer and $n>x$.



            In the special case $x=1/2$, a different formula can be found. Indeed,
            begin{align}
            frac{1}{2}left(frac{1}{2}-1right)left(frac{1}{2}-2right)dotsmleft(frac{1}{2}-n+1right)
            &=frac{(-1)^{n-1}}{2^n}bigl(1cdot3cdotdotscdot(2n-3)bigr) \
            &=frac{(-1)^{n-1}}{2^n}bigl(1cdot3cdotdotscdot(2n-3)bigr)
            frac{2cdot4cdotdotscdot(2n-2)}{2^{n-1}(1cdot 2cdotdotscdot(n-1))} \
            &=frac{(-1)^{n-1}}{2^{2n-1}}frac{(2n-2)!}{(n-1)!}\
            &=frac{(-1)^{n-1}}{2^{2n-1}}frac{(2n)!}{n!}frac{n}{2n(2n-1)}\
            &=frac{(-1)^{n-1}}{2^{2n}(2n-1)}frac{(2n)!}{n!}
            end{align}

            and therefore
            $$
            binom{1/2}{n}=frac{(-1)^{n-1}}{2^{2n}(2n-1)}frac{(2n)!}{(n!)^2}
            $$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Nov 16 at 22:16









            egreg

            174k1383198




            174k1383198






















                up vote
                5
                down vote













                The general definition of $binomalpha k$ for $kinBbb N$ and $alphainBbb C$ is $$binomalpha k=frac1{k!}prod_{h=0}^{k-1} (alpha-h)$$






                share|cite|improve this answer

























                  up vote
                  5
                  down vote













                  The general definition of $binomalpha k$ for $kinBbb N$ and $alphainBbb C$ is $$binomalpha k=frac1{k!}prod_{h=0}^{k-1} (alpha-h)$$






                  share|cite|improve this answer























                    up vote
                    5
                    down vote










                    up vote
                    5
                    down vote









                    The general definition of $binomalpha k$ for $kinBbb N$ and $alphainBbb C$ is $$binomalpha k=frac1{k!}prod_{h=0}^{k-1} (alpha-h)$$






                    share|cite|improve this answer












                    The general definition of $binomalpha k$ for $kinBbb N$ and $alphainBbb C$ is $$binomalpha k=frac1{k!}prod_{h=0}^{k-1} (alpha-h)$$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Nov 16 at 21:57









                    Saucy O'Path

                    5,5911526




                    5,5911526






















                        up vote
                        3
                        down vote













                        Same way as usual binomial. $binom{frac{1}{2}}{n}=frac{frac{1}{2}timesfrac{-1}{2}...times(frac{1}{2}-n+1)}{n!}$






                        share|cite|improve this answer

























                          up vote
                          3
                          down vote













                          Same way as usual binomial. $binom{frac{1}{2}}{n}=frac{frac{1}{2}timesfrac{-1}{2}...times(frac{1}{2}-n+1)}{n!}$






                          share|cite|improve this answer























                            up vote
                            3
                            down vote










                            up vote
                            3
                            down vote









                            Same way as usual binomial. $binom{frac{1}{2}}{n}=frac{frac{1}{2}timesfrac{-1}{2}...times(frac{1}{2}-n+1)}{n!}$






                            share|cite|improve this answer












                            Same way as usual binomial. $binom{frac{1}{2}}{n}=frac{frac{1}{2}timesfrac{-1}{2}...times(frac{1}{2}-n+1)}{n!}$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Nov 16 at 22:04









                            herb steinberg

                            2,2132310




                            2,2132310






























                                 

                                draft saved


                                draft discarded



















































                                 


                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3001678%2fdefinition-of-binom-frac121%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                AnyDesk - Fatal Program Failure

                                How to calibrate 16:9 built-in touch-screen to a 4:3 resolution?

                                QoS: MAC-Priority for clients behind a repeater