Definition of $binom{frac{1}{2}}{1}$?
up vote
0
down vote
favorite
How interpret the combination
$binom{frac{1}{2}}{n}$ when $n$ is a positive integer ?
combinatorics fractional-calculus
add a comment |
up vote
0
down vote
favorite
How interpret the combination
$binom{frac{1}{2}}{n}$ when $n$ is a positive integer ?
combinatorics fractional-calculus
In what context does this come up?
– Michael Burr
Nov 16 at 21:57
@MichaelBurr: This comes up in the binomial theorem with fractional exponents allowed.
– Cheerful Parsnip
Nov 16 at 22:01
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
How interpret the combination
$binom{frac{1}{2}}{n}$ when $n$ is a positive integer ?
combinatorics fractional-calculus
How interpret the combination
$binom{frac{1}{2}}{n}$ when $n$ is a positive integer ?
combinatorics fractional-calculus
combinatorics fractional-calculus
asked Nov 16 at 21:54
Medo
614213
614213
In what context does this come up?
– Michael Burr
Nov 16 at 21:57
@MichaelBurr: This comes up in the binomial theorem with fractional exponents allowed.
– Cheerful Parsnip
Nov 16 at 22:01
add a comment |
In what context does this come up?
– Michael Burr
Nov 16 at 21:57
@MichaelBurr: This comes up in the binomial theorem with fractional exponents allowed.
– Cheerful Parsnip
Nov 16 at 22:01
In what context does this come up?
– Michael Burr
Nov 16 at 21:57
In what context does this come up?
– Michael Burr
Nov 16 at 21:57
@MichaelBurr: This comes up in the binomial theorem with fractional exponents allowed.
– Cheerful Parsnip
Nov 16 at 22:01
@MichaelBurr: This comes up in the binomial theorem with fractional exponents allowed.
– Cheerful Parsnip
Nov 16 at 22:01
add a comment |
3 Answers
3
active
oldest
votes
up vote
1
down vote
accepted
The definition is
$$
binom{x}{n}=frac{x(x-1)dotsm(x-n+1)}{n!}
$$
where $x$ is any real number. In the numerator there are $n$ factors starting from $x$ and decreasing by $1$ at each step. This is zero if and only if $x$ is integer and $n>x$.
In the special case $x=1/2$, a different formula can be found. Indeed,
begin{align}
frac{1}{2}left(frac{1}{2}-1right)left(frac{1}{2}-2right)dotsmleft(frac{1}{2}-n+1right)
&=frac{(-1)^{n-1}}{2^n}bigl(1cdot3cdotdotscdot(2n-3)bigr) \
&=frac{(-1)^{n-1}}{2^n}bigl(1cdot3cdotdotscdot(2n-3)bigr)
frac{2cdot4cdotdotscdot(2n-2)}{2^{n-1}(1cdot 2cdotdotscdot(n-1))} \
&=frac{(-1)^{n-1}}{2^{2n-1}}frac{(2n-2)!}{(n-1)!}\
&=frac{(-1)^{n-1}}{2^{2n-1}}frac{(2n)!}{n!}frac{n}{2n(2n-1)}\
&=frac{(-1)^{n-1}}{2^{2n}(2n-1)}frac{(2n)!}{n!}
end{align}
and therefore
$$
binom{1/2}{n}=frac{(-1)^{n-1}}{2^{2n}(2n-1)}frac{(2n)!}{(n!)^2}
$$
add a comment |
up vote
5
down vote
The general definition of $binomalpha k$ for $kinBbb N$ and $alphainBbb C$ is $$binomalpha k=frac1{k!}prod_{h=0}^{k-1} (alpha-h)$$
add a comment |
up vote
3
down vote
Same way as usual binomial. $binom{frac{1}{2}}{n}=frac{frac{1}{2}timesfrac{-1}{2}...times(frac{1}{2}-n+1)}{n!}$
add a comment |
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
The definition is
$$
binom{x}{n}=frac{x(x-1)dotsm(x-n+1)}{n!}
$$
where $x$ is any real number. In the numerator there are $n$ factors starting from $x$ and decreasing by $1$ at each step. This is zero if and only if $x$ is integer and $n>x$.
In the special case $x=1/2$, a different formula can be found. Indeed,
begin{align}
frac{1}{2}left(frac{1}{2}-1right)left(frac{1}{2}-2right)dotsmleft(frac{1}{2}-n+1right)
&=frac{(-1)^{n-1}}{2^n}bigl(1cdot3cdotdotscdot(2n-3)bigr) \
&=frac{(-1)^{n-1}}{2^n}bigl(1cdot3cdotdotscdot(2n-3)bigr)
frac{2cdot4cdotdotscdot(2n-2)}{2^{n-1}(1cdot 2cdotdotscdot(n-1))} \
&=frac{(-1)^{n-1}}{2^{2n-1}}frac{(2n-2)!}{(n-1)!}\
&=frac{(-1)^{n-1}}{2^{2n-1}}frac{(2n)!}{n!}frac{n}{2n(2n-1)}\
&=frac{(-1)^{n-1}}{2^{2n}(2n-1)}frac{(2n)!}{n!}
end{align}
and therefore
$$
binom{1/2}{n}=frac{(-1)^{n-1}}{2^{2n}(2n-1)}frac{(2n)!}{(n!)^2}
$$
add a comment |
up vote
1
down vote
accepted
The definition is
$$
binom{x}{n}=frac{x(x-1)dotsm(x-n+1)}{n!}
$$
where $x$ is any real number. In the numerator there are $n$ factors starting from $x$ and decreasing by $1$ at each step. This is zero if and only if $x$ is integer and $n>x$.
In the special case $x=1/2$, a different formula can be found. Indeed,
begin{align}
frac{1}{2}left(frac{1}{2}-1right)left(frac{1}{2}-2right)dotsmleft(frac{1}{2}-n+1right)
&=frac{(-1)^{n-1}}{2^n}bigl(1cdot3cdotdotscdot(2n-3)bigr) \
&=frac{(-1)^{n-1}}{2^n}bigl(1cdot3cdotdotscdot(2n-3)bigr)
frac{2cdot4cdotdotscdot(2n-2)}{2^{n-1}(1cdot 2cdotdotscdot(n-1))} \
&=frac{(-1)^{n-1}}{2^{2n-1}}frac{(2n-2)!}{(n-1)!}\
&=frac{(-1)^{n-1}}{2^{2n-1}}frac{(2n)!}{n!}frac{n}{2n(2n-1)}\
&=frac{(-1)^{n-1}}{2^{2n}(2n-1)}frac{(2n)!}{n!}
end{align}
and therefore
$$
binom{1/2}{n}=frac{(-1)^{n-1}}{2^{2n}(2n-1)}frac{(2n)!}{(n!)^2}
$$
add a comment |
up vote
1
down vote
accepted
up vote
1
down vote
accepted
The definition is
$$
binom{x}{n}=frac{x(x-1)dotsm(x-n+1)}{n!}
$$
where $x$ is any real number. In the numerator there are $n$ factors starting from $x$ and decreasing by $1$ at each step. This is zero if and only if $x$ is integer and $n>x$.
In the special case $x=1/2$, a different formula can be found. Indeed,
begin{align}
frac{1}{2}left(frac{1}{2}-1right)left(frac{1}{2}-2right)dotsmleft(frac{1}{2}-n+1right)
&=frac{(-1)^{n-1}}{2^n}bigl(1cdot3cdotdotscdot(2n-3)bigr) \
&=frac{(-1)^{n-1}}{2^n}bigl(1cdot3cdotdotscdot(2n-3)bigr)
frac{2cdot4cdotdotscdot(2n-2)}{2^{n-1}(1cdot 2cdotdotscdot(n-1))} \
&=frac{(-1)^{n-1}}{2^{2n-1}}frac{(2n-2)!}{(n-1)!}\
&=frac{(-1)^{n-1}}{2^{2n-1}}frac{(2n)!}{n!}frac{n}{2n(2n-1)}\
&=frac{(-1)^{n-1}}{2^{2n}(2n-1)}frac{(2n)!}{n!}
end{align}
and therefore
$$
binom{1/2}{n}=frac{(-1)^{n-1}}{2^{2n}(2n-1)}frac{(2n)!}{(n!)^2}
$$
The definition is
$$
binom{x}{n}=frac{x(x-1)dotsm(x-n+1)}{n!}
$$
where $x$ is any real number. In the numerator there are $n$ factors starting from $x$ and decreasing by $1$ at each step. This is zero if and only if $x$ is integer and $n>x$.
In the special case $x=1/2$, a different formula can be found. Indeed,
begin{align}
frac{1}{2}left(frac{1}{2}-1right)left(frac{1}{2}-2right)dotsmleft(frac{1}{2}-n+1right)
&=frac{(-1)^{n-1}}{2^n}bigl(1cdot3cdotdotscdot(2n-3)bigr) \
&=frac{(-1)^{n-1}}{2^n}bigl(1cdot3cdotdotscdot(2n-3)bigr)
frac{2cdot4cdotdotscdot(2n-2)}{2^{n-1}(1cdot 2cdotdotscdot(n-1))} \
&=frac{(-1)^{n-1}}{2^{2n-1}}frac{(2n-2)!}{(n-1)!}\
&=frac{(-1)^{n-1}}{2^{2n-1}}frac{(2n)!}{n!}frac{n}{2n(2n-1)}\
&=frac{(-1)^{n-1}}{2^{2n}(2n-1)}frac{(2n)!}{n!}
end{align}
and therefore
$$
binom{1/2}{n}=frac{(-1)^{n-1}}{2^{2n}(2n-1)}frac{(2n)!}{(n!)^2}
$$
answered Nov 16 at 22:16
egreg
174k1383198
174k1383198
add a comment |
add a comment |
up vote
5
down vote
The general definition of $binomalpha k$ for $kinBbb N$ and $alphainBbb C$ is $$binomalpha k=frac1{k!}prod_{h=0}^{k-1} (alpha-h)$$
add a comment |
up vote
5
down vote
The general definition of $binomalpha k$ for $kinBbb N$ and $alphainBbb C$ is $$binomalpha k=frac1{k!}prod_{h=0}^{k-1} (alpha-h)$$
add a comment |
up vote
5
down vote
up vote
5
down vote
The general definition of $binomalpha k$ for $kinBbb N$ and $alphainBbb C$ is $$binomalpha k=frac1{k!}prod_{h=0}^{k-1} (alpha-h)$$
The general definition of $binomalpha k$ for $kinBbb N$ and $alphainBbb C$ is $$binomalpha k=frac1{k!}prod_{h=0}^{k-1} (alpha-h)$$
answered Nov 16 at 21:57
Saucy O'Path
5,5911526
5,5911526
add a comment |
add a comment |
up vote
3
down vote
Same way as usual binomial. $binom{frac{1}{2}}{n}=frac{frac{1}{2}timesfrac{-1}{2}...times(frac{1}{2}-n+1)}{n!}$
add a comment |
up vote
3
down vote
Same way as usual binomial. $binom{frac{1}{2}}{n}=frac{frac{1}{2}timesfrac{-1}{2}...times(frac{1}{2}-n+1)}{n!}$
add a comment |
up vote
3
down vote
up vote
3
down vote
Same way as usual binomial. $binom{frac{1}{2}}{n}=frac{frac{1}{2}timesfrac{-1}{2}...times(frac{1}{2}-n+1)}{n!}$
Same way as usual binomial. $binom{frac{1}{2}}{n}=frac{frac{1}{2}timesfrac{-1}{2}...times(frac{1}{2}-n+1)}{n!}$
answered Nov 16 at 22:04
herb steinberg
2,2132310
2,2132310
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3001678%2fdefinition-of-binom-frac121%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
In what context does this come up?
– Michael Burr
Nov 16 at 21:57
@MichaelBurr: This comes up in the binomial theorem with fractional exponents allowed.
– Cheerful Parsnip
Nov 16 at 22:01