components of antisymmetric tensor unchanged under rotations proof











up vote
0
down vote

favorite












In "classical theory of fields" Landau states that the components of a completely antisymmetric tensor of a rank equal to the number of dimensions of the space remain unchanged after a rotation. I have not been able to prove it or find a proof. Is there an elegant way to show this?










share|cite|improve this question


























    up vote
    0
    down vote

    favorite












    In "classical theory of fields" Landau states that the components of a completely antisymmetric tensor of a rank equal to the number of dimensions of the space remain unchanged after a rotation. I have not been able to prove it or find a proof. Is there an elegant way to show this?










    share|cite|improve this question
























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      In "classical theory of fields" Landau states that the components of a completely antisymmetric tensor of a rank equal to the number of dimensions of the space remain unchanged after a rotation. I have not been able to prove it or find a proof. Is there an elegant way to show this?










      share|cite|improve this question













      In "classical theory of fields" Landau states that the components of a completely antisymmetric tensor of a rank equal to the number of dimensions of the space remain unchanged after a rotation. I have not been able to prove it or find a proof. Is there an elegant way to show this?







      tensors rotations special-relativity






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 16 at 21:49









      wonszrzeczny

      11




      11



























          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3001675%2fcomponents-of-antisymmetric-tensor-unchanged-under-rotations-proof%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















           

          draft saved


          draft discarded



















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3001675%2fcomponents-of-antisymmetric-tensor-unchanged-under-rotations-proof%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          AnyDesk - Fatal Program Failure

          How to calibrate 16:9 built-in touch-screen to a 4:3 resolution?

          QoS: MAC-Priority for clients behind a repeater