Congruence with algebraic exponents











up vote
1
down vote

favorite












I have done a number of congruence questions but then I encountered this question:



$7^{x+2} ≡ 5(mod 29)$



How do you go around solving this? I thought of splitting the powers to $7^x$ and $7^2$ but then I got stuck trying to evaluate it...










share|cite|improve this question


























    up vote
    1
    down vote

    favorite












    I have done a number of congruence questions but then I encountered this question:



    $7^{x+2} ≡ 5(mod 29)$



    How do you go around solving this? I thought of splitting the powers to $7^x$ and $7^2$ but then I got stuck trying to evaluate it...










    share|cite|improve this question
























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      I have done a number of congruence questions but then I encountered this question:



      $7^{x+2} ≡ 5(mod 29)$



      How do you go around solving this? I thought of splitting the powers to $7^x$ and $7^2$ but then I got stuck trying to evaluate it...










      share|cite|improve this question













      I have done a number of congruence questions but then I encountered this question:



      $7^{x+2} ≡ 5(mod 29)$



      How do you go around solving this? I thought of splitting the powers to $7^x$ and $7^2$ but then I got stuck trying to evaluate it...







      number-theory modular-arithmetic






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 16 at 4:12









      Caleb Gicheru

      82




      82






















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          1
          down vote



          accepted










          Evaluating powers of $7$, mod $29$, we get
          begin{align*}
          7^0 equiv 1;(text{mod};29)\[4pt]
          7^1 equiv 7;(text{mod};29)\[4pt]
          7^2 equiv 20;(text{mod};29)\[4pt]
          7^3 equiv 24;(text{mod};29)\[4pt]
          7^4 equiv 23;(text{mod};29)\[4pt]
          7^5 equiv 16;(text{mod};29)\[4pt]
          7^6 equiv 25;(text{mod};29)\[4pt]
          7^7 equiv 1;(text{mod};29)\[4pt]
          end{align*}

          after which, the cycle repeats forever.



          It follows that no power of $7$ is congruent to $5$, mod $29$.






          share|cite|improve this answer




























            up vote
            1
            down vote













            $2$ can be proved to be a primitive root



            $2^6equiv6,2^7equiv12,2^8equiv-5,2^{14}equiv12^2equiv-1pmod{29}$



            $5=(-5)(-1)equiv2^{8+14}$



            $7equiv29+7equiv6^2equiv(2^6)^2$



            Using discrete logarithm, $(x+2)12equiv22pmod{phi(29)}$






            share|cite|improve this answer





















            • math.stackexchange.com/questions/741832/…
              – lab bhattacharjee
              Nov 16 at 5:06










            • i.e. $bmod 29!: 5$ is not a $4$th power $(4nmid 22)$ but $7$ is $(4mid 12)$ so $7^n$ is too, thus $5notequiv 7^n. $ Said equivalently $,7^7equiv 1,$ but $5^7notequiv 1 $
              – Bill Dubuque
              Nov 16 at 17:57













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














             

            draft saved


            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3000707%2fcongruence-with-algebraic-exponents%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            1
            down vote



            accepted










            Evaluating powers of $7$, mod $29$, we get
            begin{align*}
            7^0 equiv 1;(text{mod};29)\[4pt]
            7^1 equiv 7;(text{mod};29)\[4pt]
            7^2 equiv 20;(text{mod};29)\[4pt]
            7^3 equiv 24;(text{mod};29)\[4pt]
            7^4 equiv 23;(text{mod};29)\[4pt]
            7^5 equiv 16;(text{mod};29)\[4pt]
            7^6 equiv 25;(text{mod};29)\[4pt]
            7^7 equiv 1;(text{mod};29)\[4pt]
            end{align*}

            after which, the cycle repeats forever.



            It follows that no power of $7$ is congruent to $5$, mod $29$.






            share|cite|improve this answer

























              up vote
              1
              down vote



              accepted










              Evaluating powers of $7$, mod $29$, we get
              begin{align*}
              7^0 equiv 1;(text{mod};29)\[4pt]
              7^1 equiv 7;(text{mod};29)\[4pt]
              7^2 equiv 20;(text{mod};29)\[4pt]
              7^3 equiv 24;(text{mod};29)\[4pt]
              7^4 equiv 23;(text{mod};29)\[4pt]
              7^5 equiv 16;(text{mod};29)\[4pt]
              7^6 equiv 25;(text{mod};29)\[4pt]
              7^7 equiv 1;(text{mod};29)\[4pt]
              end{align*}

              after which, the cycle repeats forever.



              It follows that no power of $7$ is congruent to $5$, mod $29$.






              share|cite|improve this answer























                up vote
                1
                down vote



                accepted







                up vote
                1
                down vote



                accepted






                Evaluating powers of $7$, mod $29$, we get
                begin{align*}
                7^0 equiv 1;(text{mod};29)\[4pt]
                7^1 equiv 7;(text{mod};29)\[4pt]
                7^2 equiv 20;(text{mod};29)\[4pt]
                7^3 equiv 24;(text{mod};29)\[4pt]
                7^4 equiv 23;(text{mod};29)\[4pt]
                7^5 equiv 16;(text{mod};29)\[4pt]
                7^6 equiv 25;(text{mod};29)\[4pt]
                7^7 equiv 1;(text{mod};29)\[4pt]
                end{align*}

                after which, the cycle repeats forever.



                It follows that no power of $7$ is congruent to $5$, mod $29$.






                share|cite|improve this answer












                Evaluating powers of $7$, mod $29$, we get
                begin{align*}
                7^0 equiv 1;(text{mod};29)\[4pt]
                7^1 equiv 7;(text{mod};29)\[4pt]
                7^2 equiv 20;(text{mod};29)\[4pt]
                7^3 equiv 24;(text{mod};29)\[4pt]
                7^4 equiv 23;(text{mod};29)\[4pt]
                7^5 equiv 16;(text{mod};29)\[4pt]
                7^6 equiv 25;(text{mod};29)\[4pt]
                7^7 equiv 1;(text{mod};29)\[4pt]
                end{align*}

                after which, the cycle repeats forever.



                It follows that no power of $7$ is congruent to $5$, mod $29$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Nov 16 at 4:33









                quasi

                35.9k22562




                35.9k22562






















                    up vote
                    1
                    down vote













                    $2$ can be proved to be a primitive root



                    $2^6equiv6,2^7equiv12,2^8equiv-5,2^{14}equiv12^2equiv-1pmod{29}$



                    $5=(-5)(-1)equiv2^{8+14}$



                    $7equiv29+7equiv6^2equiv(2^6)^2$



                    Using discrete logarithm, $(x+2)12equiv22pmod{phi(29)}$






                    share|cite|improve this answer





















                    • math.stackexchange.com/questions/741832/…
                      – lab bhattacharjee
                      Nov 16 at 5:06










                    • i.e. $bmod 29!: 5$ is not a $4$th power $(4nmid 22)$ but $7$ is $(4mid 12)$ so $7^n$ is too, thus $5notequiv 7^n. $ Said equivalently $,7^7equiv 1,$ but $5^7notequiv 1 $
                      – Bill Dubuque
                      Nov 16 at 17:57

















                    up vote
                    1
                    down vote













                    $2$ can be proved to be a primitive root



                    $2^6equiv6,2^7equiv12,2^8equiv-5,2^{14}equiv12^2equiv-1pmod{29}$



                    $5=(-5)(-1)equiv2^{8+14}$



                    $7equiv29+7equiv6^2equiv(2^6)^2$



                    Using discrete logarithm, $(x+2)12equiv22pmod{phi(29)}$






                    share|cite|improve this answer





















                    • math.stackexchange.com/questions/741832/…
                      – lab bhattacharjee
                      Nov 16 at 5:06










                    • i.e. $bmod 29!: 5$ is not a $4$th power $(4nmid 22)$ but $7$ is $(4mid 12)$ so $7^n$ is too, thus $5notequiv 7^n. $ Said equivalently $,7^7equiv 1,$ but $5^7notequiv 1 $
                      – Bill Dubuque
                      Nov 16 at 17:57















                    up vote
                    1
                    down vote










                    up vote
                    1
                    down vote









                    $2$ can be proved to be a primitive root



                    $2^6equiv6,2^7equiv12,2^8equiv-5,2^{14}equiv12^2equiv-1pmod{29}$



                    $5=(-5)(-1)equiv2^{8+14}$



                    $7equiv29+7equiv6^2equiv(2^6)^2$



                    Using discrete logarithm, $(x+2)12equiv22pmod{phi(29)}$






                    share|cite|improve this answer












                    $2$ can be proved to be a primitive root



                    $2^6equiv6,2^7equiv12,2^8equiv-5,2^{14}equiv12^2equiv-1pmod{29}$



                    $5=(-5)(-1)equiv2^{8+14}$



                    $7equiv29+7equiv6^2equiv(2^6)^2$



                    Using discrete logarithm, $(x+2)12equiv22pmod{phi(29)}$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Nov 16 at 4:34









                    lab bhattacharjee

                    220k15154271




                    220k15154271












                    • math.stackexchange.com/questions/741832/…
                      – lab bhattacharjee
                      Nov 16 at 5:06










                    • i.e. $bmod 29!: 5$ is not a $4$th power $(4nmid 22)$ but $7$ is $(4mid 12)$ so $7^n$ is too, thus $5notequiv 7^n. $ Said equivalently $,7^7equiv 1,$ but $5^7notequiv 1 $
                      – Bill Dubuque
                      Nov 16 at 17:57




















                    • math.stackexchange.com/questions/741832/…
                      – lab bhattacharjee
                      Nov 16 at 5:06










                    • i.e. $bmod 29!: 5$ is not a $4$th power $(4nmid 22)$ but $7$ is $(4mid 12)$ so $7^n$ is too, thus $5notequiv 7^n. $ Said equivalently $,7^7equiv 1,$ but $5^7notequiv 1 $
                      – Bill Dubuque
                      Nov 16 at 17:57


















                    math.stackexchange.com/questions/741832/…
                    – lab bhattacharjee
                    Nov 16 at 5:06




                    math.stackexchange.com/questions/741832/…
                    – lab bhattacharjee
                    Nov 16 at 5:06












                    i.e. $bmod 29!: 5$ is not a $4$th power $(4nmid 22)$ but $7$ is $(4mid 12)$ so $7^n$ is too, thus $5notequiv 7^n. $ Said equivalently $,7^7equiv 1,$ but $5^7notequiv 1 $
                    – Bill Dubuque
                    Nov 16 at 17:57






                    i.e. $bmod 29!: 5$ is not a $4$th power $(4nmid 22)$ but $7$ is $(4mid 12)$ so $7^n$ is too, thus $5notequiv 7^n. $ Said equivalently $,7^7equiv 1,$ but $5^7notequiv 1 $
                    – Bill Dubuque
                    Nov 16 at 17:57




















                     

                    draft saved


                    draft discarded



















































                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3000707%2fcongruence-with-algebraic-exponents%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    AnyDesk - Fatal Program Failure

                    How to calibrate 16:9 built-in touch-screen to a 4:3 resolution?

                    QoS: MAC-Priority for clients behind a repeater